A259181 a(n) = n*(n+1)*(n+2)*(n+3)*(2*n^2+6*n+7)/360.
0, 1, 9, 43, 147, 406, 966, 2058, 4026, 7359, 12727, 21021, 33397, 51324, 76636, 111588, 158916, 221901, 304437, 411103, 547239, 719026, 933570, 1198990, 1524510, 1920555, 2398851, 2972529, 3656233, 4466232, 5420536, 6539016, 7843528, 9358041, 11108769
Offset: 0
Examples
a(0) = 0; a(1) = 1*1; a(2) = 4*1+1*5 = 9; a(3) = 9*1+4*5+1*14 = 43.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luce ETIENNE, illustration of initial terms
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 14.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Programs
-
PARI
vector(100, n, n--; n*(n+1)*(n+2)*(n+3)*(2*n^2+6*n+7)/360) \\ Altug Alkan, Nov 08 2015
-
PARI
concat(0, Vec(-x*(x+1)^2 / (x-1)^7 + O(x^100))) \\ Colin Barker, Nov 08 2015
Formula
a(n) = (1/6)*Sum_{i=0..n} (i+1)*(i+2)*(2*i+3)*(n-i)^2.
G.f.: x*(1 + x)^2 / (1 - x)^7. - Colin Barker, Nov 08 2015
Comments