cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259190 Primes of the form sigma(n) + sigma(n)^2 - 1.

Original entry on oeis.org

11, 19, 41, 71, 239, 181, 811, 599, 599, 991, 1559, 419, 599, 3659, 991, 3191, 929, 2351, 2969, 2351, 1481, 3659, 3191, 9311, 1979, 2351, 8741, 2969, 14519, 14519, 3659, 9311, 20879, 4691, 16001, 9311, 20879, 38219, 13109, 19739, 9311, 34781, 16001, 14519, 32579
Offset: 1

Views

Author

K. D. Bajpai, Jun 20 2015

Keywords

Comments

These primes are not sorted nor unique. They are listed in the order found.

Examples

			a(2) = 19: sigma(3) + sigma(3)^2 - 1 = 4 + 16 - 1 = 19, which is prime.
a(5) = 239: sigma(8) + sigma(8)^2 - 1 = 15 + 225 - 1 = 239, which is prime.
		

Crossrefs

Programs

  • Magma
    [k: n in [1..100] | IsPrime(k) where k is SumOfDivisors(n)+ SumOfDivisors(n)^2-1]; // K. D. Bajpai, Jun 20 2015
  • Maple
    with(numtheory): A259190:= n-> (sigma(n) + sigma(n)^2-1): select(isprime,[seq((A259190 (n), n=1..500))]);
  • Mathematica
    Select[Table[DivisorSigma[1, n] + DivisorSigma[1, n]^2 - 1, {n, 1, 10000}], PrimeQ]
  • PARI
    for(n=1, 100, k=sigma(n)+sigma (n)^2-1; if(isprime(k), print1(k,", "))); \\ K. D. Bajpai, Jun 20 2015