cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259192 Triangle, such that the g.f. satisfies: A(x,y) = (1 + x*A(x*y,y)) / (1 - x*A(x*y,y)).

Original entry on oeis.org

1, 2, 2, 4, 2, 8, 4, 8, 2, 12, 16, 20, 16, 8, 16, 2, 16, 36, 48, 68, 40, 64, 40, 32, 16, 32, 2, 20, 64, 108, 176, 172, 208, 216, 160, 168, 144, 128, 80, 64, 32, 64, 2, 24, 100, 216, 388, 528, 612, 784, 704, 792, 672, 728, 576, 560, 384, 464, 288, 256, 160, 128, 64, 128, 2, 28, 144, 388, 784, 1300, 1696, 2316, 2544, 2864, 2976, 3000, 3024, 2856, 2560, 2400, 2416, 1856, 1776, 1408, 1248, 1024, 928, 576, 512, 320, 256, 128, 256
Offset: 0

Views

Author

Paul D. Hanna, Jun 21 2015

Keywords

Comments

Row sums = A006318, the large Schröder numbers.
Antidiagonal sums = A165941; g.f.: exp( Sum_{n>=1} 2^n*x^n/(n*(1+x^n)) ).
G.f. evaluated at y=1/2: A(x,1/2) = 1/(1-2*x).

Examples

			G.f.: A(x,y) = Sum_{n>=0} Sum_{k=0..n*(n-1)/2} T(n,k) * x^n*y^k.
G.f.: A(x,y) = 1 + x*(2) + x^2*(2 + 4*y) +
x^3*(2 + 8*y + 4*y^2 + 8*y^3) +
x^4*(2 + 12*y + 16*y^2 + 20*y^3 + 16*y^4 + 8*y^5 + 16*y^6) +
x^5*(2 + 16*y + 36*y^2 + 48*y^3 + 68*y^4 + 40*y^5 + 64*y^6 + 40*y^7 + 32*y^8 + 16*y^9 + 32*y^10) +
x^6*(2 + 20*y + 64*y^2 + 108*y^3 + 176*y^4 + 172*y^5 + 208*y^6 + 216*y^7 + 160*y^8 + 168*y^9 + 144*y^10 + 128*y^11 + 80*y^12 + 64*y^13 + 32*y^14 + 64*y^15) +...
such that
A(x,y) = (1 + x*A(x*y,y)) / (1 - x*A(x*y,y)).
This triangle of coefficients begins:
1;
2;
2, 4;
2, 8, 4, 8;
2, 12, 16, 20, 16, 8, 16;
2, 16, 36, 48, 68, 40, 64, 40, 32, 16, 32;
2, 20, 64, 108, 176, 172, 208, 216, 160, 168, 144, 128, 80, 64, 32, 64;
2, 24, 100, 216, 388, 528, 612, 784, 704, 792, 672, 728, 576, 560, 384, 464, 288, 256, 160, 128, 64, 128;
2, 28, 144, 388, 784, 1300, 1696, 2316, 2544, 2864, 2976, 3000, 3024, 2856, 2560, 2400, 2416, 1856, 1776, 1408, 1248, 1024, 928, 576, 512, 320, 256, 128, 256;
2, 32, 196, 640, 1476, 2808, 4260, 6104, 7844, 9216, 10816, 11264, 12512, 12424, 12608, 11784, 12384, 10848, 10880, 9328, 8992, 7888, 7488, 5952, 5856, 4352, 4064, 3072, 3008, 2048, 1856, 1152, 1024, 640, 512, 256, 512; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k) = local(A=1+2*x); for(i=1,n, A = (1 + x*subst(A,x,x*y))/(1 - x*subst(A,x,x*y +x*O(x^n))) ); polcoeff( polcoeff(A,n,x) ,k,y) }
    for(n=0,10, for(k=0,n*(n-1)/2, print1( T(n,k),", "));print(""))

Formula

G.f.: A(x,y) = -1 + 2/(1+x - 2*x/(1+x*y - 2*x*y/(1+x*y^2 - 2*x*y^2/(1+x*y^3 - 2*x*y^3/(1+x*y^4 - 2*x*y^4/(1+x*y^5 - 2*x*y^5/(1+x*y^6 - 2*x*y^6/(1+x*y^7 -...)))))))), a continued fraction.