cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A259209 E.g.f.: Sum_{n>=1} x^(n^2) * exp(x^n) / n!.

Original entry on oeis.org

1, 2, 3, 16, 5, 366, 7, 10088, 60489, 302410, 11, 89812812, 13, 363242894, 108972864015, 886312627216, 17, 178478870169618, 19, 101401086923136020, 354798209525760021, 1548722343168022, 23, 13787827750211997081624, 129260083694424883200025, 5051650697533440026
Offset: 1

Views

Author

Paul D. Hanna, Jun 21 2015

Keywords

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 3*x^3/3! + 16*x^4/4! + 5*x^5/5! + 366*x^6/6! +...
where
A(x) = x*exp(x) + x^4*exp(x^2)/2! + x^9*exp(x^3)/3! + x^16*exp(x^4)/4! + x^25*exp(x^5)/5! + x^36*exp(x^6)/6! +...
also
A(x) = -exp(1) + 1 + (1+x) + (1+x^2)^2/2! + (1+x^3)^3/3! + (1+x^4)^4/4! + (1+x^5)^5/5! + (1+x^6)^6/6! +...
Particular values.
A(1) = exp(2) - exp(1).
A(-1) = cosh(2) - exp(1).
A(1/2) = 0.8648559700938957468696599588156983897723576531...
A(1/2) = exp(1/2)/2 + exp(1/2^2)/(2!*2^4) + exp(1/2^3)/(3!*2^9) + exp(1/2^4)/(4!*2^16) + exp(1/2^5)/(5!*2^25) +...
A(1/2) = -exp(1) + 1 + (1+1/2) + (1+1/2^2)^2/2! + (1+1/2^3)^3/3! + (1+1/2^4)^4/4! + (1+1/2^5)^5/5! + (1+1/2^6)^6/6! +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[d, n/d]*n!/d!, {d, Divisors[n]}], {n, 1, 30}] (* Vaclav Kotesovec, Oct 20 2020 *)
  • PARI
    {a(n) = my(A=1); A = sum(m=1, n, x^(m^2) * exp(x^m +x*O(x^n)) / m!); n!*polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = -exp(1) + sum(m=0, n, (1 + x^m +x*O(x^n))^m/m!); if(n==0,0, n!*polcoeff(A, n))}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n<1,0, sumdiv(n,d, binomial(d, n/d) * n!/d! ) )}
    for(n=1, 30, print1(a(n), ", "))

Formula

E.g.f.: -exp(1) + Sum_{n>=0} (1 + x^n)^n / n!.
a(n) = Sum_{d|n} binomial(d, n/d) * n!/d! for n>=1.

A326096 E.g.f.: Sum_{n>=0} ((1+x)^n + 1)^n * x^n/n!.

Original entry on oeis.org

1, 2, 6, 32, 256, 2712, 37744, 645752, 13371264, 327748832, 9332342944, 304875611328, 11298403070464, 470279355784448, 21809054992366464, 1118931830122060928, 63115145120561606656, 3892675200470654980608, 261242029823318546162176, 18994387868664467440590848, 1490356266852194536099393536, 125747158151444491631754033152
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2019

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} (q^n + p)^n * x^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*x) * x^n/n!;
here, q = (1+x) and p = 1.
In general, let F(x) be a formal power series in x such that F(0)=1, then
Sum_{n>=0} m^n * F(q^n*r)^p * log( F(q^n*r) )^n / n! =
Sum_{n>=0} r^n * [y^n] F(y)^(m*q^n + p);
here, F(x) = exp(x), q = 1+x, p = 1, r = x, m = 1.

Examples

			E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 32*x^3/3! + 256*x^4/4! + 2712*x^5/5! + 37744*x^6/6! + 645752*x^7/7! + 13371264*x^8/8! + 327748832*x^9/9! + 9332342944*x^10/10! + 304875611328*x^11/11! + 11298403070464*x^12/12! + ...
such that
A(x) = 1 + ((1+x) + 1)*x + ((1+x)^2 + 1)^2*x^2/2! + ((1+x)^3 + 1)^3*x^3/3! + ((1+x)^4 + 1)^4*x^4/4! + ((1+x)^5 + 1)^5*x^5/5! + ((1+x)^6 + 1)^6*x^6/6! + ((1+x)^7 + 1)^7*x^7/7! + ...
also
A(x) = 1 + (1+x)*exp(x*(1+x))*x + (1+x)^4*exp(x*(1+x)^2)*x^2/2! + (1+x)^9*exp(x*(1+x)^3)*x^3/3! + (1+x)^16*exp(x*(1+x)^4)*x^4/4! + (1+x)^25*exp(x*(1+x)^5)*x^5/5! + (1+x)^36*exp(x*(1+x)^6)*x^6/6! + ...
RELATED SERIES.
Below we illustrate the following identity at specific values of x:
Sum_{n>=0} ((1+x)^n + 1)^n * x^n/n!  =  Sum_{n>=0} (1+x)^(n^2) * exp(x*(1+x)^n) * x^n/n!.
(1) At x = -1/2, the following sums are equal
S1 = Sum_{n>=0} (-1)^n * 2^(-n*(n+1)) * (2^n + 1)^n / n!,
S1 = Sum_{n>=0} (-1)^n * 2^(-n*(n+1)) * exp( -1/2^(n+1) ) / n!,
where S1 = 0.41868678468707099609788224908427981408329845879700862624389...
(2) At x = -2/3, the following sums are equal
S2 = Sum_{n>=0} (-1)^n * 2^n * 3^(-n*(n+1)) * (3^n + 1)^n / n!,
S2 = Sum_{n>=0} (-1)^n * 2^n * 3^(-n*(n+1)) * exp( -2/3^(n+1) ) / n!,
where S2 = 0.33802063384093377391547056494398131361711992142768124149541...
		

Crossrefs

Programs

  • PARI
    /* E.g.f.: Sum_{n>=0} ((1+x)^n + 1)^n * x^n/n! */
    {a(n) = my(A = sum(m=0,n, ((1+x)^m + 1 +x*O(x^n))^m * x^m/m! )); n!*polcoeff(A,n)}
    for(n=0,25, print1(a(n),", "))
    
  • PARI
    /* E.g.f.: Sum_{n>=0} (1+x)^(n^2) * exp(x*(1+x)^n) * x^n/n! */
    {a(n) = my(A = sum(m=0,n, (1+x +x*O(x^n))^(m^2) * exp(x*(1+x)^m +x*O(x^n)) * x^m/m! )); n!*polcoeff(A,n)}
    for(n=0,25, print1(a(n),", "))

Formula

E.g.f.: Sum_{n>=0} ((1+x)^n + 1)^n * x^n/n!,
E.g.f.: Sum_{n>=0} (1+x)^(n^2) * exp(x*(1+x)^n) * x^n/n!.

A326098 E.g.f.: Sum_{n>=0} (n+1) * (1 + x^n)^n * x^n/n!

Original entry on oeis.org

1, 2, 7, 4, 77, 6, 2527, 8, 33609, 725770, 907211, 12, 946028173, 14, 968647695, 653837184016, 17473020364817, 18, 935267389056019, 20, 1723379337808128021, 1703031405723648022, 3716933623603223, 24, 124520749358323872153625, 3877802510832746496000026, 11787184960911360027, 10802449851605508096000028, 16938242101749730412851200029, 30, 51981534567681070815925862400031
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2019

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 7*x^2 + 4*x^3 + 77*x^4 + 6*x^5 + 2527*x^6 + 8*x^7 + 33609*x^8 + 725770*x^9 + 907211*x^10 + 12*x^11 + 946028173*x^12 + 14*x^13 + ...
such that
A(x) = 1 + 2*(1+x)*x + 3*(1+x^2)^2*x^2/2! + 4*(1+x^3)^3*x^3/3! + 5*(1+x^4)^4*x^4/4! + 6*(1+x^5)^5*x^5/5! + 7*(1+x^6)^6*x^6/6! + 8*(1+x^7)^7*x^7/7! + ...
also
A(x) = (1 + x)*exp(x) + (2 + x^2)*exp(x^2)*x^2 + (3 + x^3)*exp(x^3)*x^6/2! + (4 + x^4)*exp(x^4)*x^12/3! + (5 + x^5)*exp(x^5)*x^20/4! + (6 + x^6)*exp(x^6)*x^30/5! + (7 + x^7)*exp(x^7)*x^42/6! + ...
		

Crossrefs

Cf. A259208.

Programs

  • PARI
    {a(n) = if(n==0,1, sumdiv(n,d, (d + 1) * binomial(d, n/d - 1) * n!/d! ) )}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    /* E.g.f.: Sum_{n>=0} (n+1) * (1 + x^n)^n * x^n/n! */
    {a(n) = my(A = sum(m=0,n, (m+1) * (x^m + 1 +x*O(x^n))^m * x^m/m! )); n!*polcoeff(A,n)}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    /* E.g.f.: Sum_{n>=1} (n + x^n) * exp(x^n) * x^(n*(n-1))/(n-1)! */
    {a(n) = my(A = sum(m=1,sqrtint(2*n+1), (m + x^m) * exp(x^m +x*O(x^n)) * x^(m*(m-1))/(m-1)! )); n!*polcoeff(A,n)}
    for(n=0,30, print1(a(n),", "))

Formula

E.g.f.: Sum_{n>=0} (n+1) * (1 + x^n)^n * x^n/n!.
E.g.f.: Sum_{n>=1} (n + x^n) * exp(x^n) * x^(n*(n-1))/(n-1)!.
a(n) = Sum_{d|n} (d + 1) * binomial(d, n/d - 1) * n!/d! for n>0, with a(0) = 1.
Showing 1-3 of 3 results.