cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259235 Decimal expansion of sqrt(2*sqrt(3*sqrt(4*...))), a variant of Somos's quadratic recurrence constant.

Original entry on oeis.org

2, 7, 6, 1, 2, 0, 6, 8, 4, 1, 9, 5, 7, 4, 9, 8, 0, 3, 3, 2, 3, 0, 4, 5, 4, 6, 4, 6, 5, 8, 0, 1, 3, 1, 1, 0, 4, 8, 7, 6, 1, 2, 5, 9, 8, 0, 7, 1, 5, 3, 0, 4, 8, 5, 0, 9, 5, 0, 7, 4, 5, 9, 6, 1, 3, 7, 5, 5, 9, 5, 5, 9, 1, 9, 4, 3, 9, 2, 7, 1, 5, 8, 3, 4, 8, 0, 1, 7, 2, 6, 6, 3, 0, 8, 9, 8, 9, 4, 4, 3, 4, 1
Offset: 1

Views

Author

Jean-François Alcover, Jun 22 2015

Keywords

Examples

			2.7612068419574980332304546465801311048761259807153...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Exp(2*(&+[(1/2)^n*Log(n): n in [2..2000]])); // G. C. Greubel, Sep 30 2018
  • Mathematica
    RealDigits[Exp[-2*Derivative[1, 0][PolyLog][0, 1/2]], 10, 102] // First
    RealDigits[Exp[2*Sum[(1/2)^n*Log[n], {n, 2, 2000}]], 10, 100][[1]] (* G. C. Greubel, Sep 30 2018 *)
  • PARI
    exp(sumpos(n=1,log(n+1)/2^n)) \\ Charles R Greathouse IV, Apr 18 2016
    

Formula

Equals A112302^2.
Equals exp( Sum_{n>=1} log(n)/2^(n-1) ).
Also equals exp(-2*PolyLog'(0,1/2)), where PolyLog' is the derivative of PolyLog(n,x) w.r.t. n.