A259267 E.g.f. A(x) satisfies: A'(x) = exp(2*A(A(x))).
1, 2, 12, 128, 2016, 42656, 1145280, 37563008, 1464675840, 66533778944, 3466031815680, 204489094565888, 13524452573872128, 994257291909816320, 80668058806271016960, 7179145234347383128064, 697131195162680465817600, 73522035747248454761578496, 8387016414085244676889116672
Offset: 1
Keywords
Examples
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 128*x^4/4! + 2016*x^5/5! +... Related expansions: A'(x) = 1 + 2*x + 12*x^2/2! + 128*x^3/3! + 2016*x^4/4! + 42656*x^5/5! +... A(A(x)) = log(A'(x))/2 = x + 4*x^2/2! + 36*x^3/3! + 520*x^4/4! + 10512*x^5/5! + 276064*x^6/6! + 8987712*x^7/7! + 351278080*x^8/8! +... The exponential of e.g.f. A(x) equals the e.g.f. of A233336: exp(A(x)) = 1 + x + 3*x^2/2! + 19*x^3/3! + 201*x^4/4! + 3097*x^5/5! + 63963*x^6/6! + 1677883*x^7/7! +...+ A233336(n)*x^n/n! +...
Programs
-
PARI
{a(n)=local(A=x+x^2); for(i=0, n, A=intformal(exp(2*subst(A, x, A+x*O(x^n))))); n!*polcoeff(A, n)} for(n=1, 25, print1(a(n), ", "))