cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259274 G.f.: A(x) = exp( Sum_{n>=1} 4^n * x^n/(n*(1+x^n)) ).

Original entry on oeis.org

1, 4, 12, 52, 204, 804, 3244, 12948, 51756, 207108, 828364, 3313332, 13253580, 53014116, 212055852, 848224660, 3392897772, 13571588484, 54286358988, 217145432052, 868581718860, 3474326895460, 13897307565804, 55589230225428, 222356920980972, 889427683862724, 3557710735299660
Offset: 0

Views

Author

Paul D. Hanna, Jun 23 2015

Keywords

Comments

Compare to: exp( Sum_{n>=1} x^n/(1+x^n)/n ) = Sum_{n>=0} x^(n*(n+1)/2).

Examples

			G.f.: A(x) = 1 + 4*x + 12*x^2 + 52*x^3 + 204*x^4 + 804*x^5 + 3244*x^6 +...
such that
log(A(x)) = 4*x/(1+x) + 4^2*x^2/(2*(1+x^2)) + 4^3*x^3/(3*(1+x^3)) + 4^4*x^4/(4*(1+x^4)) + 4^5*x^5/(5*(1+x^5)) +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Exp[Sum[4^k * x^k / (1 + x^k)/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 18 2020 *)
  • PARI
    {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, 4^m*x^m/(1+x^m+x*O(x^n))/m)), n))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x^(n+1-i)*A)/(1 - 3*x^(n+1-i)*A+ x*O(x^n))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: -1/3 + (4/3)/(1+x - 4*x/(1+x^2 - 4*x^2/(1+x^3 - 4*x^3/(1+x^4 - 4*x^4/(1+x^5 - 4*x^5/(1+x^6 - 4*x^6/(1+x^7 - 4*x^7/(1+x^8 - 4*x^8/(...))))))))), a continued fraction.
G.f.: A(x) = (1 + x*B(x))/(1 - 3*x*B(x)), where B(x) = (1 + x^2*C(x))/(1 - 3*x^2*C(x)), C(x) = (1 + x^3*D(x))/(1 - 3*x^3*D(x)), D(x) = (1 + x^4*E(x))/(1 - 3*x^4*E(x)), ...
a(n) ~ c * 4^n, where c = 2^(3/4) / EllipticTheta[2, 0, 1/2] = 0.789970474669932371974378022396788915338046391238667... - Vaclav Kotesovec, Oct 18 2020, updated Mar 17 2024