cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259285 Expansion of psi(x^2) * f(x, x^7) in powers of x where psi(), f(,) are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 1, 2, 0, 1, 1, 0, 2, 2, 0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 2, 1, 1, 2, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 1, 0, 2, 0, 1, 0, 1, 3, 0, 1, 0, 1, 3, 1, 0, 0, 0, 0, 1, 2, 1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 2, 1, 0, 0, 3, 1, 0, 1, 0
Offset: 0

Views

Author

Michael Somos, Jun 23 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + x^3 + x^6 + 2*x^7 + x^9 + x^10 + 2*x^12 + 2*x^13 + ...
G.f. = q^13 + q^29 + q^45 + q^61 + q^109 + 2*q^125 + q^157 + q^173 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^1, x^8] QPochhammer[ -x^2, x^8] QPochhammer[ -x^6, x^8] QPochhammer[ -x^7, x^8] QPochhammer[x^8]^2, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ (1 + x^(8 k - 1)) (1 + x^(8 k - 2)) (1 + x^(8 k - 6)) (1 + x^(8 k - 7)) (1 - x^(8 k))^2, {k, Ceiling[n/8]}], {x, 0, n}];
  • PARI
    {a(n) = my(m, s, x, c); if( n<0, 0, s = sqrtint(m = 16*n + 13); for(u = (s+3)\-8, (s-3)\8, if( issquare( m - (8*u + 3)^2, &x) && (x%8==2 || x%8==6), c++))); c};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^[ 2, -1, 0, 0, 1, 0, -1, -1, 2, -1, -1, 0, 1, 0, 0, -1][k%16 + 1], 1 + x * O(x^n)), n))};

Formula

Number of solutions to 16*n + 13 = (8*u + 3)^2 + (8*v + 2)^2 where u,v in Z.
Euler transform of period 16 sequence [ 1, 0, 0, -1, 0, 1, 1, -2, 1, 1, 0, -1, 0, 0, 1, -2, ...].
a(9*n + 2) = A259287(n). a(9*n + 5) = a(9*n + 8) = 0.
-2 * a(n) = A134343(4*n + 3). a(n) = A000161(16*n + 13) = A025426(16*n + 13) = A025435(16*n + 13) = A025441(16*n + 13).