A259313 Numbers m for which there exists a k>=2 such that m equals the average of digitsum(m^p) for p from 1 to k.
1, 9, 12, 13, 16, 19, 21, 49, 61, 67, 84, 106, 160, 191, 207, 250, 268, 373, 436, 783, 2321, 3133, 3786, 3805, 4842, 5128, 8167, 13599, 29431, 35308
Offset: 1
Examples
Digitsum(9) is 9, digitsum(9^2) is 9. (9+9)/2 = 9. So 9 is in this sequence. 12^1 = 12, 12^2 = 144, 12^3 = 1728 and 12^4 = 20736. Digitsum(12) = 3, digitsum(144) = 9, digitsum(1728) = 18, digitsum(20736) = 18, (3+9+18+18)/4 = 12. So 12 is in this sequence.
Programs
-
Mathematica
fQ[n_] := If[ IntegerQ@ Log10@ n, False, Block[{pwr = 2, s = Plus @@ IntegerDigits@ n}, While[s = s + Plus @@ IntegerDigits[n^pwr]; s < n*pwr, pwr++]; If[s == n*pwr, True, False]]]; k = 1; lst = {1}; While[k < 100001, If[fQ@ k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Jul 30 2015 *)
-
Python
def sod(n): kk = 0 while n > 0: kk= kk+(n%10) n =int(n//10) return kk for c in range (2, 10**3): bb=0 for a in range(1,200): bb=bb+sod(c**a) if bb==c*a: print (c,a)
Extensions
a(21)-a(28) from Giovanni Resta, Jun 24 2015
a(1)-a(28) checked by Robert G. Wilson v, Jul 30 2015
a(29)-a(30) from Robert G. Wilson v, Jul 30 2015
Comments