cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259317 a(n) = 2*(2*n+1)*A000538(n) - 4*A000330(n)^2.

Original entry on oeis.org

0, 2, 70, 588, 2772, 9438, 26026, 61880, 131784, 257754, 471086, 814660, 1345500, 2137590, 3284946, 4904944, 7141904, 10170930, 14202006, 19484348, 26311012, 35023758, 46018170, 59749032, 76735960, 97569290, 122916222, 153527220, 190242668, 233999782
Offset: 0

Views

Author

N. J. A. Sloane, Jun 24 2015

Keywords

Examples

			n=3: 588 = 2*7*92-4*14^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,2,70,588,2772,9438,26026},30] (* Harvey P. Dale, Jul 12 2025 *)
  • PARI
    concat(0, Vec(-2*x*(x^4+28*x^3+70*x^2+28*x+1)/(x-1)^7 + O(x^100))) \\ Colin Barker, Jun 28 2015
    
  • Python
    def A259317(n): return n*(n*(n**2*(n*(16*n + 48) + 40) - 11) - 3)//45 # Chai Wah Wu, Dec 07 2021

Formula

Also a(n) = (2*n+1)*A259108(n) - A006331(n)^2.
a(n) = (n*(1+2*n)^2*(-3+n+8*n^2+4*n^3))/45. - Colin Barker, Jun 28 2015
G.f.: -2*x*(x^4+28*x^3+70*x^2+28*x+1) / (x-1)^7. - Colin Barker, Jun 28 2015