cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259335 a(n) = ( Sum_{k=0..n} binomial(2*n, k)^2 * (binomial(2*n, k+1) - binomial(2*n, k-1)) )/(n*binomial(2*n, n)).

Original entry on oeis.org

1, 7, 61, 611, 6686, 77729, 944245, 11859355, 152893720, 2013070126, 26967817306, 366542344117, 5043651762826, 70138959074461, 984384594022117, 13927418363218955, 198459156018467084, 2845950809029225472, 41044332341739034032, 594983281327999736694
Offset: 1

Views

Author

N. J. A. Sloane, Jun 25 2015

Keywords

Programs

  • Maple
    f:=proc(n) local b;
    b:=binomial;
    add(b(2*n,k)^2*(b(2*n,k+1)-b(2*n,k-1)),k=0..n)/(n*b(2*n,n));
    end;
  • PARI
    a(n) = sum(k=0, n, k/(n+k)*binomial(n+k, k)^2)/(n+1); \\ Seiichi Manyama, Jul 16 2024

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} (k/(n+k)) * binomial(n+k,k)^2. - Seiichi Manyama, Jul 16 2024