A259342 Irregular triangle read by rows: T(n,k) = number of equivalence classes of binary sequences of length n containing exactly 2k ones.
1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 4, 1, 1, 4, 8, 4, 1, 1, 4, 10, 7, 1, 1, 5, 16, 16, 5, 1, 1, 5, 20, 26, 10, 1, 1, 6, 29, 50, 29, 6, 1, 1, 6, 35, 76, 57, 14, 1, 1, 7, 47, 126, 126, 47, 7, 1, 1, 7, 56, 185, 232, 111, 19, 1, 1, 8, 72, 280, 440, 280, 72, 8, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 1; 1, 2, 1; 1, 2, 1; 1, 3, 3, 1; 1, 3, 4, 1; 1, 4, 8, 4, 1; 1, 4, 10, 7, 1; 1, 5, 16, 16, 5, 1; 1, 5, 20, 26, 10, 1; 1, 6, 29, 50, 29, 6, 1; 1, 6, 35, 76, 57, 14, 1; 1, 7, 47, 126, 126, 47, 7, 1; ...
Links
- Alois P. Heinz, Rows n = 1..200, flattened
- W. D. Hoskins and Anne Penfold Street, Twills on a given number of harnesses, J. Austral. Math. Soc. Ser. A 33 (1982), no. 1, 1-15.
- W. D. Hoskins and A. P. Street, Twills on a given number of harnesses, J. Austral. Math. Soc. (Series A), 33 (1982), 1-15. (Annotated scanned copy)
Crossrefs
Row sums are (essentially) A000011.
Programs
-
Maple
with(numtheory): T:= (n, k)-> (add(`if`(irem(2*k*d, n)=0, phi(n/d) *binomial(d, 2*k*d/n), 0), d=divisors(n)) +n*binomial(iquo(n, 2), k))/(2*n): seq(seq(T(n, k), k=0..n/2), n=1..20); # Alois P. Heinz, Jun 28 2015
-
Mathematica
T[n_, k_] := (DivisorSum[n, If[Mod[2k*#, n]==0, EulerPhi[n/#]*Binomial[#, 2k*#/n], 0]&] + n*Binomial[Quotient[n, 2], k])/(2n); Table[T[n, k], {n, 1, 20}, { k, 0, n/2}] // Flatten (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *)
Formula
Theorem 1 of Hoskins-Street gives an explicit formula.