A259350 Numbers n such that n-1, n, and n+1 are all products of 7 distinct primes.
41704979954, 124731595066, 365993436094, 366230785766, 367810728790, 368695198806, 589316590786, 598986161410, 607638803134, 673917791834, 710756189898, 753389272714, 762118572046, 772416848554, 806996241806, 832216749090, 874567856590, 905173650094, 933893335166, 958872775134, 970959170390, 985722818366, 997785568130
Offset: 1
Keywords
Examples
41704979953 = 7*13*29*41*47*59*139, 41704979954 = 2*11*23*31*83*103*311, and 41704979955 = 3*5*17*19*109*157*503; and no smaller such trio exists, so that a(1)=41704979954.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..2510
Programs
-
PARI
{ \\Program runs for arbitrary B.\\ B=10^12;N=primepi(B/(627*17*19*23)); p=vector(N,n,prime(n)); in=primepi((B/210)^(1/3)); P=prod(i=1,27,p[i]);Q=prod(i=28,in,p[i]); v=28;d=[[1,2],[-1,1],[-2,-1]];i3=6; while(6*p[i3]^5626, if(k1*p[i3+1]*p[i3+2]*p[i3+3]*p[i3+4]=k1,v--;Q*=p[v];P/=p[v])); r=(B\k1)^(1/4);j1=i3+1; while(p[j1]
2, f=1;if(y1==3,if(a1>j1,f=0)); if(f, b1=gcd(P,b);z1=omega(b1); if(z1>2, if(z1==3,if(b1>j1,f=0)); if(f, a2=a/a1; if(gcd(a1,a2)==1, b2=b/b1; if(gcd(b1,b2)==1, a21=gcd(a2,Q);a22=a2/a21; if(gcd(a21,a22)==1, y=y1+omega(a21); if(y>4, if(y<8, b21=gcd(Q,b2);b22=b2/b21; if(gcd(b21,b22)==1, z=z1+omega(b21); if(z>4, if(z<8, if(y+omega(a22)==7, if(z+omega(b22)==7, f1=factor(a1); if(f1[1,1]*f1[2,1]*f1[3,1]
Comments