cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259357 Expansion of f(-x^5)^2 / f(-x, -x^4) in powers of x where f(,) is the Ramanujan general theta function.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 3, 5, 5, 5, 6, 7, 7, 9, 9, 11, 11, 13, 13, 16, 17, 19, 20, 23, 24, 27, 29, 32, 34, 38, 40, 46, 48, 52, 56, 62, 65, 72, 76, 84, 89, 97, 102, 113, 119, 129, 137, 149, 157, 171, 181, 196, 208, 224, 236, 256, 270, 290, 308, 331
Offset: 0

Views

Author

Michael Somos, Jun 24 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + ...
G.f. = q^23 + q^143 + q^263 + q^383 + 2*q^503 + q^623 + 2*q^743 + 2*q^863 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's Lost Notebook, Part III, Springer, 2012, see p. 12, Entry 2.1.3, Equation (2.1.21).
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 23, equation 3.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^5] / (QPochhammer[ x, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 1, -1, 0, 0, -1][k%5+1]), n))};

Formula

Expansion of f(-x^5) * f(-x^2, -x^3) / f(-x) in powers of x where f(,) is the Ramanujan general theta function.
Expansion of f(-x^5) * G(x) in powers of x where f() is a Ramanujan theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jul 09 2015
Euler transform of period 5 sequence [ 1, 0, 0, 1, -1, ...].
G.f.: Product_{k>0} (1 - x^(5*k)) / ((1 - x^(5*k-4)) * (1 - x^(5*k-1))).
Convolution of A035959 and A113428.