A259377 Palindromic numbers in bases 3 and 7 written in base 10.
0, 1, 2, 4, 8, 16, 40, 100, 121, 142, 164, 242, 328, 400, 1312, 8200, 9103, 14762, 54008, 76024, 108016, 112048, 233920, 532900, 639721, 741586, 2585488, 3316520, 11502842, 24919360, 35664908, 87001616, 184827640, 4346524576, 5642510512, 11641189600, 65304259157, 68095147754, 469837033600, 830172165614, 17136683996456, 21772277941544, 22666883572232, 45221839119556
Offset: 1
Examples
142 is in the sequence because 142_10 = 262_7 = 12021_3.
Links
Crossrefs
Cf. A007632, A007633, A029731, A029804, A029961, A029962, A029963, A029964, A029965, A029966, A029967, A029968, A029969, A029970, A048268, A060792, A097855, A097856, A097928, A097929, A097930, A097931, A099145, A099146, A099165, A182232, A182233, A182234, A250408, A250409, A250410, A250411, A250412, A259374, A259375, A259376, A259377, A259378, A249156, A259380, A259381, A259382, A259383, A259384, A259385, A259386, A259387, A259388, A259389, A259390.
Programs
-
Mathematica
(* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 7]; If[palQ[pp, 3], AppendTo[lst, pp]; Print[pp]]; k++]; lst b1=3; b2=7; lst={};Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1] && d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)