cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259405 Decimal expansion of a constant related to A259373.

Original entry on oeis.org

9, 0, 8, 6, 6, 1, 6, 6, 7, 6, 4, 4, 4, 5, 4, 8, 9, 2, 5, 6, 6, 5, 8, 1, 1, 3, 7, 7, 0, 2, 1, 5, 9, 2, 7, 8, 1, 3, 6, 9, 4, 2, 2, 1, 3, 7, 2, 7, 3, 7, 0, 6, 6, 6, 5, 1, 1, 2, 3, 4, 2, 8, 3, 3, 9, 7, 2, 2, 6, 8, 6, 5, 0, 1, 5, 4, 3, 7, 0, 7, 5, 9, 1, 8, 2, 4, 8, 8, 2, 1, 6, 8, 5, 7, 2, 6, 5
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 26 2015

Keywords

Examples

			0.908661667644454892566581137702159278136942213727370666511234283397226865...
		

Crossrefs

Programs

  • Mathematica
    (* The iteration cycle: *) Do[Print[Product[N[PartitionsP[k]^k/((E^(Sqrt[2/3]*Sqrt[k-1/24]*Pi) * (1 - Sqrt[3/2]/(Sqrt[k-1/24]*Pi))) / (4*Sqrt[3]*(k-1/24)))^k, 150], {k, 1, n}]], {n, 1000, 50000, 1000}]

Formula

Equals limit n->infinity Product_{k=1..n} p(k)^k / (exp(Pi*sqrt(2/3*(k-1/24))) / (4*sqrt(3)*(k-1/24)) * (1 - sqrt(3/(2*(k-1/24)))/Pi))^k, where p(k) is the partition function A000041.