A259405 Decimal expansion of a constant related to A259373.
9, 0, 8, 6, 6, 1, 6, 6, 7, 6, 4, 4, 4, 5, 4, 8, 9, 2, 5, 6, 6, 5, 8, 1, 1, 3, 7, 7, 0, 2, 1, 5, 9, 2, 7, 8, 1, 3, 6, 9, 4, 2, 2, 1, 3, 7, 2, 7, 3, 7, 0, 6, 6, 6, 5, 1, 1, 2, 3, 4, 2, 8, 3, 3, 9, 7, 2, 2, 6, 8, 6, 5, 0, 1, 5, 4, 3, 7, 0, 7, 5, 9, 1, 8, 2, 4, 8, 8, 2, 1, 6, 8, 5, 7, 2, 6, 5
Offset: 0
Examples
0.908661667644454892566581137702159278136942213727370666511234283397226865...
Programs
-
Mathematica
(* The iteration cycle: *) Do[Print[Product[N[PartitionsP[k]^k/((E^(Sqrt[2/3]*Sqrt[k-1/24]*Pi) * (1 - Sqrt[3/2]/(Sqrt[k-1/24]*Pi))) / (4*Sqrt[3]*(k-1/24)))^k, 150], {k, 1, n}]], {n, 1000, 50000, 1000}]
Formula
Equals limit n->infinity Product_{k=1..n} p(k)^k / (exp(Pi*sqrt(2/3*(k-1/24))) / (4*sqrt(3)*(k-1/24)) * (1 - sqrt(3/(2*(k-1/24)))/Pi))^k, where p(k) is the partition function A000041.