A259457 From higher-order arithmetic progressions.
3, 66, 1050, 15300, 220500, 3245760, 49533120, 789264000, 13172544000, 230519520000, 4229703878400, 81315551116800, 1636227552960000, 34417989365760000, 755835784704000000, 17305616126582784000, 412559358036553728000, 10227311816872550400000, 263309943217447526400000, 7032029553158658048000000
Offset: 0
Keywords
Links
- Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
Programs
-
Maple
rX := proc(n, a, d) n*a+(n-1)*n/2*d; end proc: A259457 := proc(n) mul(rX(i, a, d), i=1..n+2) ; coeftayl(%, d=0, 2) ; coeftayl(%, a=0, n) ; end proc: seq(A259457(n), n=1..25) ; # R. J. Mathar, Jul 15 2015
-
Mathematica
rX[n_, a_, d_] := n*a + (n-1)*n/2*d; A259457[n_] := Product[rX[i, a, d], {i, 1, n+3}]// SeriesCoefficient[#, {d, 0, 2}]&// SeriesCoefficient[#, {a, 0, n+1}]&; Table[A259457[n], {n, 0, 17}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)
Formula
Conjecture: 3*n*a(n) +(-3*n^2-19*n-44)*a(n-1) -2*(n+2)^2*a(n-2)=0. - R. J. Mathar, Jul 15 2015
From Georg Fischer, Dec 06 2024: (Start)
a(n) = (n+3)!*(n+2)*(n+1)*(n+3)*(3*n+8)/96.
D-finite with recurrence: -n*(3*n+5)*a(n) + (n+3)^2*(3*n+8)*a(n-1) = 0. (End)