cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259457 From higher-order arithmetic progressions.

Original entry on oeis.org

3, 66, 1050, 15300, 220500, 3245760, 49533120, 789264000, 13172544000, 230519520000, 4229703878400, 81315551116800, 1636227552960000, 34417989365760000, 755835784704000000, 17305616126582784000, 412559358036553728000, 10227311816872550400000, 263309943217447526400000, 7032029553158658048000000
Offset: 0

Views

Author

N. J. A. Sloane, Jun 30 2015

Keywords

Crossrefs

Programs

  • Maple
    rX := proc(n, a, d)
            n*a+(n-1)*n/2*d;
    end proc:
    A259457 := proc(n)
            mul(rX(i, a, d), i=1..n+2) ;
            coeftayl(%, d=0, 2) ;
            coeftayl(%, a=0, n) ;
    end proc:
    seq(A259457(n), n=1..25) ; # R. J. Mathar, Jul 15 2015
  • Mathematica
    rX[n_, a_, d_] := n*a + (n-1)*n/2*d;
    A259457[n_] :=
       Product[rX[i, a, d], {i, 1, n+3}]//
       SeriesCoefficient[#, {d, 0, 2}]&//
       SeriesCoefficient[#, {a, 0, n+1}]&;
    Table[A259457[n], {n, 0, 17}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)

Formula

Conjecture: 3*n*a(n) +(-3*n^2-19*n-44)*a(n-1) -2*(n+2)^2*a(n-2)=0. - R. J. Mathar, Jul 15 2015
From Georg Fischer, Dec 06 2024: (Start)
a(n) = (n+3)!*(n+2)*(n+1)*(n+3)*(3*n+8)/96.
D-finite with recurrence: -n*(3*n+5)*a(n) + (n+3)^2*(3*n+8)*a(n-1) = 0. (End)