A259460 From higher-order arithmetic progressions.
4, 220, 10500, 535500, 30870000, 2044828800, 156029328000, 13673998800000, 1369285948800000, 155756276676000000, 20005336176265440000, 2884501462544301600000, 464334381775424160000000, 83021688624014300160000000, 16408769917253890176000000000, 3569104362241728159962112000000, 850861011640079911341911040000000
Offset: 0
Keywords
Links
- Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
Programs
-
Maple
rV := proc(n,a,d) n*(n+1)/2*a+(n-1)*n*(n+1)/6*d; end proc: A259460 := proc(n) mul(rV(i,a,d),i=1..n+2) ; coeftayl(%,d=0,2) ; coeftayl(%,a=0,n) ; end proc: seq(A259460(n),n=1..18) ; # R. J. Mathar, Jul 14 2015
-
Mathematica
rV[n_, a_, d_] := n (n + 1)/2*a + (n - 1) n (n + 1)/6*d; A259460[n_] := Product[rV[i, a, d], {i, 1, n + 3}] // SeriesCoefficient[#, {d, 0, 2}] & // SeriesCoefficient[#, {a, 0, n + 1}] & ; Table[A259460[n], {n, 0, 16}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)
Formula
From Georg Fischer, Dec 06 2024: (Start)
a(n) = (n+4)!*(n+3)!/2^(n+3)/9 * (n+2)*(n+1)*(n+3)*(3*n+8)/24.
D-finite with recurrence: 2*n*(3*n+5)*a(n) - (n+3)^2*(n+4)*(3*n+8)*a(n-1) = 0. (End)
Extensions
Typos in data corrected by Jean-François Alcover, Apr 27 2023
Comments