cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259478 Partition containment triangle.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 5, 8, 7, 5, 7, 12, 13, 12, 7, 11, 20, 23, 25, 19, 11, 15, 28, 35, 42, 39, 30, 15, 22, 42, 54, 70, 70, 66, 45, 22, 30, 58, 78, 105, 114, 119, 99, 67, 30, 42, 82, 112, 158, 178, 202, 186, 155, 97, 42, 56, 110, 154, 223, 262, 313, 314, 292, 226, 139, 56, 77, 152, 215, 319, 383, 479, 503, 511, 442, 336, 195, 77
Offset: 1

Views

Author

Wouter Meeussen, Jun 28 2015

Keywords

Comments

T(n,k) counts pairs of partitions (lambda,mu) with Ferrers diagram of mu not extending beyond the diagram of lambda for all partitions lambda of size n and mu of size k <= n.
First column and main diagonal both equal A000041 (partition numbers).
This sequence counts (2,1)/(1) as different from (3,2,1)/(3,1) while their set-theoretic difference lambda - mu (their skew diagram) is the same.

Examples

			T(3,2) = 4, the pairs of partitions are ((3)/(2)), ((2,1)/(2)), ((2,1)/(1,1)), ((1,1,1)/(1,1))
and the diagrams are:
  x x 0 , x x , x 0 , x
          0     x     x
                      0
Triangle begins:
  n=1;  1
  n=2;  2  2
  n=3;  3  4  3
  n=4;  5  8  7  5
  n=5;  7 12 13 12  7
  n=6; 11 20 23 25 19 11
		

References

  • I. G. MacDonald: "Symmetric functions and Hall polynomials", Oxford University Press, 1979. Page 4.

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; expand(`if`(n=0 or i=1,
          `if`(t=0, 1, add(x^j, j=0..n)), b(n, i-1, min(i-1, t))+
           add(b(n-i, min(i, n-i), min(j, n-i))*x^j, j=0..t)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$3)):
    seq(T(n), n=1..15);  # Alois P. Heinz, Jul 05 2015, revised Jan 10 2018
  • Mathematica
    majorsweak[left_List,right_List]:=Block[{le1=Length[left],le2=Length[right]},If[le2>le1||Min[Sign[left-PadRight[right,le1]]]<0,False,True]];
    Table[Sum[ If[! majorsweak[\[Lambda], \[Mu]], 0, 1] , {\[Lambda], IntegerPartitions[n] }, {\[Mu], IntegerPartitions[m]}], {n, 7}, {m, n}]
    (* Second program: *)
    b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[m > n, 0, If[n == 0, 1, If[i < 1, 0, If[t && j > 0, b[n, m, i, j - 1, t], 0] + If[i > j, b[n, m, i - 1, j, False], 0] + If[i > n || j > m, 0, b[n - i, m - j, i, j, True]]]]]; T[n_, m_] :=  b[n, m, n, m, True]; Table[Table[T[n, m], {m, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Aug 27 2016, after Alois P. Heinz *)

Formula

Sum_{k=1..n} T(n,k) = A297388(n) - A000041(n). - Alois P. Heinz, Jan 10 2018