A259478 Partition containment triangle.
1, 2, 2, 3, 4, 3, 5, 8, 7, 5, 7, 12, 13, 12, 7, 11, 20, 23, 25, 19, 11, 15, 28, 35, 42, 39, 30, 15, 22, 42, 54, 70, 70, 66, 45, 22, 30, 58, 78, 105, 114, 119, 99, 67, 30, 42, 82, 112, 158, 178, 202, 186, 155, 97, 42, 56, 110, 154, 223, 262, 313, 314, 292, 226, 139, 56, 77, 152, 215, 319, 383, 479, 503, 511, 442, 336, 195, 77
Offset: 1
Examples
T(3,2) = 4, the pairs of partitions are ((3)/(2)), ((2,1)/(2)), ((2,1)/(1,1)), ((1,1,1)/(1,1)) and the diagrams are: x x 0 , x x , x 0 , x 0 x x 0 Triangle begins: n=1; 1 n=2; 2 2 n=3; 3 4 3 n=4; 5 8 7 5 n=5; 7 12 13 12 7 n=6; 11 20 23 25 19 11
References
- I. G. MacDonald: "Symmetric functions and Hall polynomials", Oxford University Press, 1979. Page 4.
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Eric Weisstein's World of Mathematics, Ferrers Diagram
- Wikipedia, Ferrers diagram
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; expand(`if`(n=0 or i=1, `if`(t=0, 1, add(x^j, j=0..n)), b(n, i-1, min(i-1, t))+ add(b(n-i, min(i, n-i), min(j, n-i))*x^j, j=0..t))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$3)): seq(T(n), n=1..15); # Alois P. Heinz, Jul 05 2015, revised Jan 10 2018
-
Mathematica
majorsweak[left_List,right_List]:=Block[{le1=Length[left],le2=Length[right]},If[le2>le1||Min[Sign[left-PadRight[right,le1]]]<0,False,True]]; Table[Sum[ If[! majorsweak[\[Lambda], \[Mu]], 0, 1] , {\[Lambda], IntegerPartitions[n] }, {\[Mu], IntegerPartitions[m]}], {n, 7}, {m, n}] (* Second program: *) b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[m > n, 0, If[n == 0, 1, If[i < 1, 0, If[t && j > 0, b[n, m, i, j - 1, t], 0] + If[i > j, b[n, m, i - 1, j, False], 0] + If[i > n || j > m, 0, b[n - i, m - j, i, j, True]]]]]; T[n_, m_] := b[n, m, n, m, True]; Table[Table[T[n, m], {m, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Aug 27 2016, after Alois P. Heinz *)
Comments