A259479 Skew diagrams, both connected or not.
1, 1, 0, 2, 0, 0, 3, 1, 0, 0, 5, 3, 0, 0, 0, 7, 5, 2, 0, 0, 0, 11, 9, 6, 1, 0, 0, 0, 15, 13, 12, 6, 0, 0, 0, 0, 22, 20, 22, 14, 3, 0, 0, 0, 0, 30, 28, 36, 27, 13, 2, 0, 0, 0, 0, 42, 40, 56, 48, 31, 11, 1, 0, 0, 0, 0, 56, 54, 82, 77, 59, 33, 9, 0, 0, 0, 0, 0, 77, 75, 120, 121, 106, 72, 30, 6, 0, 0, 0, 0, 0
Offset: 0
Examples
T(6,2) = 6, the pairs of partitions are ((4,2)/(2)), ((3,3)/(2)), ((3,2,1)/(2)), ((3,2,1)/(1,1)), ((2,2,2)/(1,1)) and ((2,2,1,1)/(1,1)) and the diagrams are: x x 0 0 , x x 0 , x x 0 , x 0 0 , x 0 , x 0 0 0 0 0 0 0 0 x 0 x 0 x 0 0 0 0 0 0 0 Triangle begins: k=0 1 2 3 4 5 6 n=0; 1 n=1; 1 0 n=2; 2 0 0 n=3; 3 1 0 0 n=4; 5 3 0 0 0 n=5; 7 5 2 0 0 0 n=6; 11 9 6 1 0 0 0
References
- I. G. MacDonald: "Symmetric functions and Hall polynomials", Oxford University Press, 1979. Page 4.
Links
- Wouter Meeussen, Table n, m, T(n,m) for n= 1..27
Programs
-
Mathematica
majorsweak[left_List, right_List]:=Block[{le1=Length[left], le2=Length[right]}, If[le2>le1||Min[Sign[left-PadRight[right, le1]]]<0, False, True]]; redu1[\[Lambda],\[Mu]]/;majorsweak[\[Lambda],\[Mu]]:=Delete[#,List/@DeleteCases[Table[i Boole[\[Lambda][[i]]==\[Mu][[i]]],{i,Length[\[Mu]]}],0]]&/@{\[Lambda],\[Mu]}; redu[\[Lambda],\[Mu]]/;majorsweak[\[Lambda],\[Mu]]:=TransposePartition/@Apply[redu1,TransposePartition/@redu1[\[Lambda],\[Mu]]]; Table[Sum[Boole[majorsweak[\[Lambda],\[Mu]]&&redu[\[Lambda],\[Mu]]=={\[Lambda],\[Mu]}],{\[Lambda],Partitions[n]},{\[Mu],Partitions[k]}],{n,0,12},{k,0,n}];
Comments