A259480 T(n,m) counts connected skew Ferrers diagrams of shape lambda/mu with lambda and mu partitions of n and m respectively (0<=m<=n).
0, 1, 0, 2, 0, 0, 3, 0, 0, 0, 5, 1, 0, 0, 0, 7, 2, 0, 0, 0, 0, 11, 5, 2, 0, 0, 0, 0, 15, 8, 4, 0, 0, 0, 0, 0, 22, 14, 10, 3, 0, 0, 0, 0, 0, 30, 21, 18, 7, 1, 0, 0, 0, 0, 0, 42, 32, 32, 17, 6, 0, 0, 0, 0, 0, 0, 56, 45, 50, 31, 15, 2, 0, 0, 0, 0, 0, 0, 77, 65, 80, 58, 36, 11, 2, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
T(7,2) = 4, the pairs of partitions are ((4,3)/(2)), ((3,3,1)/(2)), ((3,2,2)/(1,1)) and ((2,2,2,1)/(1,1)); The diagrams are: x x 0 0 , x x 0 , x 0 0 , x 0 0 0 0 0 0 0 x 0 x 0 0 0 0 0 0 0 Triangle begins: k=0 1 2 3 4 5 6 7 n=0; 0 n=1; 1 0 n=2; 2 0 0 n=3; 3 0 0 0 n=4; 5 1 0 0 0 n=5; 7 2 0 0 0 0 n=6; 11 5 2 0 0 0 0 n=7; 15 8 4 0 0 0 0 0
References
- I. G. MacDonald: "Symmetric functions and Hall polynomials"; Oxford University Press, 1979. Page 4.
Links
- Wouter Meeussen, Table n,m, T(n,m) for n= 1..27
Programs
-
Mathematica
(* see A259479 *) factor[\[Lambda],\[Mu]]/;majorsweak[\[Lambda],\[Mu]]:=Block[{a1,a2,a3},a1=Apply[Join,Table[{i,j},{i,Length[\[Lambda]]},{j,\[Lambda][[i]],\[Lambda][[Min[i+1,Length[\[Lambda]]]]],-1}]]; a2=Map[{First[#],First[#]>Length[\[Mu]]||\[Mu][[First[#]]]<#[[2]]}&,a1];a3=Map[First,DeleteCases[SplitBy[a2,MatchQ[#,{,False}]&],{{,False}}],{2}]; Flatten[redu[Part[\[Lambda],#], Part[PadRight[\[Mu],Length[\[Lambda]],0],#]/. 0->Sequence[]]&/@Map[Union,a3],1]]; Table[Sum[Boole[majorsweak[\[Lambda],\[Mu]]&&redu[\[Lambda],\[Mu]]==factor[\[Lambda],\[Mu]]=={\[Lambda],\[Mu]}],{\[Lambda],Partitions[n]},{\[Mu],Partitions[k]}],{n,0,12},{k,0,n}]
Comments