A259481 T(n,m) counts of border strips in skew tabloids of shape lambda/mu, with lambda and mu partitions of n and m (0<=m<=n).
0, 1, 0, 2, 0, 0, 3, 0, 0, 0, 4, 1, 0, 0, 0, 5, 2, 0, 0, 0, 0, 6, 3, 2, 0, 0, 0, 0, 7, 4, 4, 0, 0, 0, 0, 0, 8, 5, 6, 3, 0, 0, 0, 0, 0, 9, 6, 8, 6, 1, 0, 0, 0, 0, 0, 10, 7, 10, 9, 6, 0, 0, 0, 0, 0, 0, 11, 8, 12, 12, 11, 2, 0, 0, 0, 0, 0, 0, 12, 9, 14, 15, 16, 9, 2, 0, 0, 0, 0, 0, 0, 13, 10, 16, 18, 21, 16, 7, 0, 0, 0, 0, 0, 0, 0, 14, 11, 18, 21, 26, 23, 18, 4, 0, 0, 0, 0, 0, 0, 0, 15, 12, 20, 24, 31, 30, 29, 12, 3, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
T(8,2) = 6, the pairs of partitions are ((5,3)/(2)), ((4,3,1)/(2)), ((4,2,2)/(1,1)), ((3,3,1,1)/(2)), ((3,2,2,1)/(1,1)) and ((2,2,2,1,1)/(1,1)); the diagrams are: x x 0 0 0 , x x 0 0 , x 0 0 0 , x x 0 , x 0 0 , x 0 0 0 0 0 0 0 x 0 0 0 0 x 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 Triangle begins: k=0 1 2 3 4 5 6 7 n=0; 0 n=1; 1 0 n=2; 2 0 0 n=3; 3 0 0 0 n=4; 4 1 0 0 0 n=5; 5 2 0 0 0 0 n=6; 6 3 2 0 0 0 0 n=7; 7 4 4 0 0 0 0 0
References
- I. G. MacDonald: "Symmetric functions and Hall polynomials"; Oxford University Press, 1979. Page 4.
Programs
-
Mathematica
(* see A259479 *) Table[Sum[Boole[majorsweak[\[Lambda],\[Mu]]&&( Tr[\[Lambda]]-Tr[\[Mu]]==Length[\[Lambda]]+First[\[Lambda]]-1 )&& redu[\[Lambda],\[Mu]]==factor[\[Lambda],\[Mu]]=={\[Lambda],\[Mu]}],{\[Lambda],Partitions[n]},{\[Mu],Partitions[k]}],{n,0,12},{k,0,n}]
Comments