cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A259478 Partition containment triangle.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 5, 8, 7, 5, 7, 12, 13, 12, 7, 11, 20, 23, 25, 19, 11, 15, 28, 35, 42, 39, 30, 15, 22, 42, 54, 70, 70, 66, 45, 22, 30, 58, 78, 105, 114, 119, 99, 67, 30, 42, 82, 112, 158, 178, 202, 186, 155, 97, 42, 56, 110, 154, 223, 262, 313, 314, 292, 226, 139, 56, 77, 152, 215, 319, 383, 479, 503, 511, 442, 336, 195, 77
Offset: 1

Views

Author

Wouter Meeussen, Jun 28 2015

Keywords

Comments

T(n,k) counts pairs of partitions (lambda,mu) with Ferrers diagram of mu not extending beyond the diagram of lambda for all partitions lambda of size n and mu of size k <= n.
First column and main diagonal both equal A000041 (partition numbers).
This sequence counts (2,1)/(1) as different from (3,2,1)/(3,1) while their set-theoretic difference lambda - mu (their skew diagram) is the same.

Examples

			T(3,2) = 4, the pairs of partitions are ((3)/(2)), ((2,1)/(2)), ((2,1)/(1,1)), ((1,1,1)/(1,1))
and the diagrams are:
  x x 0 , x x , x 0 , x
          0     x     x
                      0
Triangle begins:
  n=1;  1
  n=2;  2  2
  n=3;  3  4  3
  n=4;  5  8  7  5
  n=5;  7 12 13 12  7
  n=6; 11 20 23 25 19 11
		

References

  • I. G. MacDonald: "Symmetric functions and Hall polynomials", Oxford University Press, 1979. Page 4.

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; expand(`if`(n=0 or i=1,
          `if`(t=0, 1, add(x^j, j=0..n)), b(n, i-1, min(i-1, t))+
           add(b(n-i, min(i, n-i), min(j, n-i))*x^j, j=0..t)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$3)):
    seq(T(n), n=1..15);  # Alois P. Heinz, Jul 05 2015, revised Jan 10 2018
  • Mathematica
    majorsweak[left_List,right_List]:=Block[{le1=Length[left],le2=Length[right]},If[le2>le1||Min[Sign[left-PadRight[right,le1]]]<0,False,True]];
    Table[Sum[ If[! majorsweak[\[Lambda], \[Mu]], 0, 1] , {\[Lambda], IntegerPartitions[n] }, {\[Mu], IntegerPartitions[m]}], {n, 7}, {m, n}]
    (* Second program: *)
    b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[m > n, 0, If[n == 0, 1, If[i < 1, 0, If[t && j > 0, b[n, m, i, j - 1, t], 0] + If[i > j, b[n, m, i - 1, j, False], 0] + If[i > n || j > m, 0, b[n - i, m - j, i, j, True]]]]]; T[n_, m_] :=  b[n, m, n, m, True]; Table[Table[T[n, m], {m, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Aug 27 2016, after Alois P. Heinz *)

Formula

Sum_{k=1..n} T(n,k) = A297388(n) - A000041(n). - Alois P. Heinz, Jan 10 2018

A259480 T(n,m) counts connected skew Ferrers diagrams of shape lambda/mu with lambda and mu partitions of n and m respectively (0<=m<=n).

Original entry on oeis.org

0, 1, 0, 2, 0, 0, 3, 0, 0, 0, 5, 1, 0, 0, 0, 7, 2, 0, 0, 0, 0, 11, 5, 2, 0, 0, 0, 0, 15, 8, 4, 0, 0, 0, 0, 0, 22, 14, 10, 3, 0, 0, 0, 0, 0, 30, 21, 18, 7, 1, 0, 0, 0, 0, 0, 42, 32, 32, 17, 6, 0, 0, 0, 0, 0, 0, 56, 45, 50, 31, 15, 2, 0, 0, 0, 0, 0, 0, 77, 65, 80, 58, 36, 11, 2, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Wouter Meeussen, Jul 01 2015

Keywords

Comments

In contrast to A161492, which counts the same items by area and number of columns, this sequence appears to have no known generating function.
The diagonals T(n,n-k) count connected skew diagrams with weight k:
1; 2; 3,1; 5,2,2; 7,5,4,3,1; 11,8,10,7,6,2,2;
Their sums equal A006958.

Examples

			T(7,2) = 4, the pairs of partitions are ((4,3)/(2)), ((3,3,1)/(2)), ((3,2,2)/(1,1)) and ((2,2,2,1)/(1,1));
The diagrams are:
  x x 0 0 , x x 0 , x 0 0 , x 0
  0 0 0     0 0 0   x 0     x 0
            0       0 0     0 0
                            0
Triangle begins:
      k=0  1  2  3  4  5  6  7
  n=0;  0
  n=1;  1  0
  n=2;  2  0  0
  n=3;  3  0  0  0
  n=4;  5  1  0  0  0
  n=5;  7  2  0  0  0  0
  n=6; 11  5  2  0  0  0  0
  n=7; 15  8  4  0  0  0  0  0
		

References

  • I. G. MacDonald: "Symmetric functions and Hall polynomials"; Oxford University Press, 1979. Page 4.

Crossrefs

Programs

  • Mathematica
    (* see A259479 *) factor[\[Lambda],\[Mu]]/;majorsweak[\[Lambda],\[Mu]]:=Block[{a1,a2,a3},a1=Apply[Join,Table[{i,j},{i,Length[\[Lambda]]},{j,\[Lambda][[i]],\[Lambda][[Min[i+1,Length[\[Lambda]]]]],-1}]];
    a2=Map[{First[#],First[#]>Length[\[Mu]]||\[Mu][[First[#]]]<#[[2]]}&,a1];a3=Map[First,DeleteCases[SplitBy[a2,MatchQ[#,{,False}]&],{{,False}}],{2}];
    Flatten[redu[Part[\[Lambda],#], Part[PadRight[\[Mu],Length[\[Lambda]],0],#]/. 0->Sequence[]]&/@Map[Union,a3],1]];
    Table[Sum[Boole[majorsweak[\[Lambda],\[Mu]]&&redu[\[Lambda],\[Mu]]==factor[\[Lambda],\[Mu]]=={\[Lambda],\[Mu]}],{\[Lambda],Partitions[n]},{\[Mu],Partitions[k]}],{n,0,12},{k,0,n}]

A259479 Skew diagrams, both connected or not.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 3, 1, 0, 0, 5, 3, 0, 0, 0, 7, 5, 2, 0, 0, 0, 11, 9, 6, 1, 0, 0, 0, 15, 13, 12, 6, 0, 0, 0, 0, 22, 20, 22, 14, 3, 0, 0, 0, 0, 30, 28, 36, 27, 13, 2, 0, 0, 0, 0, 42, 40, 56, 48, 31, 11, 1, 0, 0, 0, 0, 56, 54, 82, 77, 59, 33, 9, 0, 0, 0, 0, 0, 77, 75, 120, 121, 106, 72, 30, 6, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Wouter Meeussen, Jun 28 2015

Keywords

Comments

T(n,m) counts pairs of partitions lambda of n and mu of 0<=m<=n respectively, so that the Ferrers diagram of mu does not exceed that of lambda, and that the diagrams of lambda and mu do not contain equal rows or columns.

Examples

			T(6,2) = 6, the pairs of partitions are ((4,2)/(2)), ((3,3)/(2)), ((3,2,1)/(2)), ((3,2,1)/(1,1)), ((2,2,2)/(1,1)) and ((2,2,1,1)/(1,1))
and the diagrams are:
  x x 0 0 , x x 0 , x x 0 , x 0 0 , x 0 , x 0
  0 0       0 0 0   0 0     x 0     x 0   x 0
                    0       0       0 0   0
                                          0
Triangle begins:
      k=0  1  2  3  4  5  6
  n=0;  1
  n=1;  1  0
  n=2;  2  0  0
  n=3;  3  1  0  0
  n=4;  5  3  0  0  0
  n=5;  7  5  2  0  0  0
  n=6; 11  9  6  1  0  0  0
		

References

  • I. G. MacDonald: "Symmetric functions and Hall polynomials", Oxford University Press, 1979. Page 4.

Crossrefs

Programs

  • Mathematica
    majorsweak[left_List, right_List]:=Block[{le1=Length[left], le2=Length[right]}, If[le2>le1||Min[Sign[left-PadRight[right, le1]]]<0, False, True]];
    redu1[\[Lambda],\[Mu]]/;majorsweak[\[Lambda],\[Mu]]:=Delete[#,List/@DeleteCases[Table[i Boole[\[Lambda][[i]]==\[Mu][[i]]],{i,Length[\[Mu]]}],0]]&/@{\[Lambda],\[Mu]};
    redu[\[Lambda],\[Mu]]/;majorsweak[\[Lambda],\[Mu]]:=TransposePartition/@Apply[redu1,TransposePartition/@redu1[\[Lambda],\[Mu]]];
    Table[Sum[Boole[majorsweak[\[Lambda],\[Mu]]&&redu[\[Lambda],\[Mu]]=={\[Lambda],\[Mu]}],{\[Lambda],Partitions[n]},{\[Mu],Partitions[k]}],{n,0,12},{k,0,n}];

A330369 Triangle read by rows: T(n,k) (1 <= k <= n) is the total number of right angles of size k in all partitions of n.

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 1, 0, 1, 4, 2, 0, 0, 2, 5, 3, 2, 0, 2, 3, 6, 4, 4, 0, 0, 4, 4, 7, 5, 6, 3, 0, 3, 6, 5, 8, 7, 8, 7, 0, 1, 6, 8, 6, 9, 9, 10, 11, 4, 0, 6, 9, 10, 7, 10, 13, 12, 15, 10, 0, 2, 11, 12, 12, 8, 11
Offset: 1

Views

Author

Omar E. Pol, Dec 12 2019

Keywords

Comments

This triangle has the property that it contains the triangle A049597, since if we replace with zeros the positive terms before the first zero in the row n of this triangle, we get the triangle A049597.
Hence the sum of the terms after the last zero in row n equals A000041(n), the number of partitions of n (see the Example section).
Observation: at least the first 11 terms of column 1 coincide with A188674 (using the same indices).

Examples

			Triangle begins:
   1;
   0,  2;
   0,  0,  3;
   1,  0,  1,  4;
   2,  0,  0,  2,  5;
   3,  2,  0,  2,  3,  6;
   4,  4,  0,  0,  4,  4,  7;
   5,  6,  3,  0,  3,  6,  5,  8;
   7,  8,  7,  0,  1,  6,  8,  6,  9;
   9, 10, 11,  4,  0,  6,  9, 10,  7, 10;
  13, 12, 15, 10,  0,  2, 11, 12, 12,  8, 11;
Figure 1 below shows the Ferrers diagram of the partition of 24: [7, 6, 3, 3, 2, 1, 1, 1]. Figure 2 shows the right-angles diagram of the same partition. Note that in this last diagram we can see the size of the three right angles as follows: the first right angle has size 14 because it contains 14 square cells, the second right angle has size 8 and the third right angle has size 2.
.
.                                     Right-angles   Right
Part   Ferrers diagram         Part   diagram        angle
                                      _ _ _ _ _ _ _
  7    * * * * * * *             7   |  _ _ _ _ _ _|  14
  6    * * * * * *               6   | |  _ _ _ _|     8
  3    * * *                     3   | | | |           2
  3    * * *                     3   | | |_|
  2    * *                       2   | |_|
  1    *                         1   | |
  1    *                         1   | |
  1    *                         1   |_|
.
       Figure 1.                      Figure 2.
.
For n = 8 the partitions of 8 and their respective right-angles diagrams are as follows:
.
    _       _ _       _ _ _       _ _ _ _       _ _ _ _ _
  1| |8   2|  _|8   3|  _ _|8   4|  _ _ _|8   5|  _ _ _ _|8
  1| |    1| |      1| |        1| |          1| |
  1| |    1| |      1| |        1| |          1| |
  1| |    1| |      1| |        1| |          1|_|
  1| |    1| |      1| |        1|_|
  1| |    1| |      1|_|
  1| |    1|_|
  1|_|
    _ _ _ _ _ _       _ _ _ _ _ _ _       _ _ _ _ _ _ _ _
  6|  _ _ _ _ _|8   7|  _ _ _ _ _ _|8   8|_ _ _ _ _ _ _ _|8
  1| |              1|_|
  1|_|
.
    _ _       _ _ _       _ _ _ _       _ _ _ _ _       _ _ _ _ _ _
  2|  _|7   3|  _ _|7   4|  _ _ _|7   5|  _ _ _ _|7   6|  _ _ _ _ _|7
  2| |_|1   2| |_|  1   2| |_|    1   2| |_|      1   2|_|_|        1
  1| |      1| |        1| |          1|_|
  1| |      1| |        1|_|
  1| |      1|_|
  1|_|
.
    _ _       _ _ _       _ _ _       _ _ _ _       _ _ _ _       _ _ _ _ _
  2|  _|6   3|  _ _|6   3|  _ _|6   4|  _ _ _|6   4|  _ _ _|6   5|  _ _ _ _|6
  2| | |2   2| | |  2   3| |_ _|2   2| | |    2   3| |_ _|  2   3|_|_ _|    2
  2| |_|    2| |_|      1| |        2|_|_|        1|_|
  1| |      1|_|        1|_|
  1|_|
.
    _ _       _ _ _        _ _ _ _
  2|  _|5   3|  _ _|5    4|  _ _ _|5
  2| | |3   3| |  _|3    4|_|_ _ _|3
  2| | |    2|_|_|
  2|_|_|
.
There are  5 right angles of size 1, so T(8,1) = 5.
There are  6 right angles of size 2, so T(8,2) = 6.
There are  3 right angles of size 3, so T(8,3) = 3.
There are no right angle  of size 4, so T(8,4) = 0.
There are  3 right angles of size 5, so T(8,5) = 3.
There are  6 right angles of size 6, so T(8,6) = 6.
There are  5 right angles of size 7, so T(8,7) = 5.
There are  8 right angles of size 8, so T(8,8) = 8.
Hence the 8th row of triangle is [5, 6, 3, 0, 3, 6, 5, 8].
Note that the sum of the terms after the last zero is 3 + 6 + 5 + 8 = 22, equaling A000041(8) = 22, the number of partitions of 8.
		

References

  • G. E. Andrews, Theory of Partitions, Cambridge University Press, 1984, page 143 [Defines the right angles in the Ferrers graph of a partition. - N. J. A. Sloane, Nov 20 2020]

Crossrefs

Row sums give A115995.
Right border gives A000027.
Showing 1-4 of 4 results.