A259484 Smallest nonprime number having least positive primitive root n, or 0 if no such root exists.
1, 0, 9, 4, 0, 6, 1681, 22, 0, 0, 97969, 118, 16900321, 914, 1062961, 542, 0, 262, 2827367929, 382
Offset: 0
Examples
a(2) = 9 because the least primitive root of the nonprime number 9 is 2 and no nonprime less than 9 meets this criterion.
References
- A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XLIV.
Links
- Eric Weisstein's World of Mathematics, Primitive Root.
Programs
-
Mathematica
smallestPrimitiveRoot[n_ /; n <= 1] = 0; smallestPrimitiveRoot[n_] := Block[{pr = PrimitiveRoot[n], g}, If[ !NumericQ[pr], g = 0, g = 1; While[g <= pr, If[ CoprimeQ[g, n] && MultiplicativeOrder[g, n] == EulerPhi[n], Break[]]; g++]]; g]; (* This part of the code is from Jean-François Alcover as found in A046145, Feb 15 2012 *) t = Table[-1, {1000}]; ppQ[n_] := GCD @@ Last /@ FactorInteger@ n > 1; ppQ[1] = True; k = 1; While[ k < 1001, If[ ppQ@ k, t[[k]] = 0]; k++]; k = 1; While[k < 200000001, If[ !PrimeQ[k], a = smallestPrimitiveRoot[k]; If[ t[[a]] == -1, t[[a]] = k]]; k++]; t
Formula
a(n) = 0 if n is a perfect power (A001597).
Extensions
a(18)-a(19) from Robert G. Wilson v, Sep 26 2015
Comments