cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259487 Least positive integer m with prime(m)+2 and prime(prime(m))+2 both prime such that prime(m*n)+2 and prime(prime(m*n))+2 are both prime.

Original entry on oeis.org

2, 1860, 408, 25011, 51312, 37977, 695, 4071, 10970, 3621, 17671, 12005, 1230, 19494, 542, 577, 408, 2476, 584, 542, 469, 34229, 343, 24078, 3011, 25749, 20706, 24198, 2478, 3926, 1030, 1030, 13857, 3621, 343, 13380, 2476, 4922, 2476, 296, 19176, 29175, 34737, 13, 625, 2956, 408, 572, 7, 469, 15604, 9699, 26515, 2167, 5302, 9773, 54254, 1410, 4524, 4351
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 28 2015

Keywords

Comments

Conjecture: Any positive rational number r can be written as m/n with m and n terms of A259488.
This implies that there are infinitely many primes p with p+2 and prime(p)+2 both prime.
I have verified the conjecture for all those r = a/b with a,b = 1,...,400. - Zhi-Wei Sun, Jun 29 2015

Examples

			a(1) = 2 since prime(2)+2 = 3+2 = 5 and prime(prime(2))+2 = prime(3)+2 = 7 are both prime, but prime(1)+2 = 4 is composite.
a(49) = 7 since prime(7)+2 = 17+2 = 19, prime(prime(7))+2 = prime(17)+2 = 59+2 = 61, prime(49*7)+2 = 2309+2 = 2311 and prime(prime(49*7))+2 = prime(2309)+2 = 20441+2 = 20443 are all prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    PQ[k_]:=PrimeQ[Prime[k]+2]&&PrimeQ[Prime[Prime[k]]+2]
    Do[k=0;Label[bb];k=k+1;If[PQ[k]&&PQ[n*k], Goto[aa], Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,1,60}]