cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A259540 Least positive integer k such that k and k*n are terms of A259539.

Original entry on oeis.org

60, 326940, 728700, 115020, 375258, 70920, 33150, 297990, 2340, 72870, 858, 1416210, 284130, 78978, 91368, 9438, 5547000, 767760, 1182918, 30468, 485208, 60, 7908810, 916188, 21522, 823968, 87720, 390210, 3252, 72870, 7878, 1823010, 1179990, 98010, 3462, 7878, 280590, 6870, 60, 434460
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 30 2015

Keywords

Comments

Conjecture: Any positive rational number r can be written as m/n with m and n terms of A259539.
For example, 4/5 = 11673840/14592300 with 11673840 and 14592300 terms of A259539.

Examples

			a(22) = 60 since 60 and 60*22 = 1320 are terms of A259539. In fact, 60-1 = 59, 60+1 = 61, prime(60)+2 = 283, 1320-1 = 1319, 1320+1 = 1321 and prime(1320)+2 = 10861 are all prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    PQ[k_]:=PrimeQ[Prime[k]+2]&&PrimeQ[Prime[Prime[k]+1]+2]
    QQ[n_]:=PrimeQ[n-1]&&PrimeQ[n+1]&&PrimeQ[Prime[n]+2]
    Do[k=0;Label[bb];k=k+1;If[PQ[k]&&QQ[n*(Prime[k]+1)], Goto[aa], Goto[bb]]; Label[aa]; Print[n, " ", Prime[k]+1];Continue,{n, 1, 40}]

A259492 Least positive integer k such that prime(k)-k, prime(k)+k, prime(k*n)-k*n, prime(k*n)+k*n, prime(k)+k*n and prime(k*n)+k are all prime.

Original entry on oeis.org

4, 48852, 6, 27330, 89814, 13080, 9570, 44592, 6762, 28560, 1560, 8580, 2958, 672, 9816, 6300, 40050, 53580, 3354, 858, 4530, 100650, 182520, 49740, 48660, 25296, 66990, 87120, 43680, 6840, 52122, 2970, 22770, 15888, 34704, 406350, 67890, 99630, 92490, 83064, 28614, 8580, 32070, 42, 50442, 38676, 818202, 30450, 47880, 4620
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 28 2015

Keywords

Comments

Conjecture: Any positive rational number r can be written as m/n with prime(m)-m, prime(m)+m, prime(n)-n, prime(n)+n, prime(m)+n and m+prime(n) all prime.

Examples

			a(3) = 6 since prime(6)-6 = 7, prime(6)+6 = 19, prime(6*3)-6*3 = 43, prime(6*3)+6*3 = 79, prime(6)+6*3 = 31 and prime(6*3)+6 = 67 are all prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28-Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    PQ[k_]:=PrimeQ[Prime[k]-k]&&PrimeQ[Prime[k]+k]
    QQ[m_,n_]:=PQ[m]&&PQ[n]&&PrimeQ[Prime[m]+n]&&PrimeQ[m+Prime[n]]
    Do[k=0;Label[bb];k=k+1;If[QQ[k,n*k], Goto[aa], Goto[bb]]; Label[aa]; Print[n, " ", k];Continue,{n,1,50}]

A261281 Least positive integer k with prime(k)^2-2 and prime(prime(k))^2-2 both prime such that prime(k*n)^2-2 and prime(prime(k*n))^2-2 are all prime.

Original entry on oeis.org

1, 1, 319, 134, 34, 62, 2, 536, 5215, 15, 3965, 2168, 34, 1, 1, 737, 2, 7075, 3699, 419, 132, 372, 14, 2, 34, 2, 52, 1, 668, 36561, 2, 48, 1239, 1, 401, 1613, 1646, 2472, 43, 31361, 134, 1103, 1, 5374, 6201, 466, 1, 1, 2118, 2, 1646, 1, 1343, 856, 28, 1868, 10324, 360, 2845, 6571, 65, 1, 419, 43, 1, 2, 2, 1, 889, 202
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 14 2015

Keywords

Comments

Conjecture: a(n) exists for any n > 0. In general, any positive rational number r can be written as m/n with m and n in the set {k>0: prime(k)^2-2 and prime(prime(k))^2-2 are both prime}.
This implies that the sequence A237414 has infinitely many terms.

Examples

			a(2) = 1 since prime(1)^2-2 = 2^2-2 = 2, prime(prime(1))^2-2 = prime(2)^2-2 = 3^2-2 = 7, prime(1*2)^2-2 = 3^2-2 = 7, and prime(prime(1*2))^2-2 = prime(3)^2-2 = 5^2-2 = 23 are all prime.
a(3) = 319 since prime(319)^2-2 = 2113^2-2 = 4464767, prime(prime(319))^2-2 = prime(2113)^2-2 = 18443^2-2 = 340144247, prime(319*3)^2-2 = 7547^2-2 = 56957207, and prime(prime(3*319))^2-2 = prime(7547)^2-2 = 76757^2-2 = 5891637047 are all prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Prime[n]
    q[n_]:=PrimeQ[f[n]^2-2]&&PrimeQ[f[f[n]]^2-2]
    Do[k=0;Label[bb];k=k+1;If[q[k]&&q[k*n],Goto[aa],Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,1,70}]
  • PARI
    a(n) = my(k=1); while (!isprime(prime(k)^2-2) || !isprime(prime(prime(k))^2-2) || !isprime(prime(k*n)^2-2) || !isprime(prime(prime(k*n))^2-2), k++); k; \\ Michel Marcus, Aug 14 2015

A259531 Least positive integer k such that p(k)^2 + p(k*n)^2 is prime, where p(.) is the partition function given by A000041, or 0 if no such k exists.

Original entry on oeis.org

1, 1, 14, 11, 6, 31, 2, 34, 2, 76, 1, 100, 71, 38, 1, 7, 62, 1128, 1, 180, 123, 15, 174, 128, 4, 111, 110, 2, 4, 2, 2241, 21, 144, 416, 397, 31, 11, 8, 15, 5, 91, 56, 53, 23, 89, 18, 25, 341, 12, 1, 66, 454, 159, 36, 573, 26, 2, 488, 72, 416, 802, 440, 28, 30, 595, 17, 236, 947, 1289, 1287, 1000, 367, 80, 407, 1, 77, 938, 150, 36, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 02 2015

Keywords

Comments

Conjecture: Any positive rational number r can be written as m/n, where m and n are positive integers with p(m)^2 + p(n)^2 prime.
For example, 4/5 = 124/155, and the number p(124)^2 + p(155)^2 = 2841940500^2 + 66493182097^2 = 4429419891190341567409 is prime.
We also guess that any positive rational number can be written as m/n, where m and n are positive integers with p(m)+p(n) (or p(m)*p(n)-1, or p(m)*p(n)+1) prime.

Examples

			a(5) = 6 since p(6)^2 + p(6*5)^2 = 11^2 + 5604^2 = 31404937 is prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    Do[k=0;Label[bb];k=k+1;If[PrimeQ[PartitionsP[k]^2+PartitionsP[k*n]^2],Goto[aa],Goto[bb]];Label[aa];Print[n," ",k]; Continue,{n,1,80}]

A261282 Least positive integer k such that prime(k)*prime(k*n) = prime(p)+2 for some prime p.

Original entry on oeis.org

14, 60, 135, 41, 199, 2, 2, 2, 61, 2, 183, 25, 15, 12, 47, 143, 110, 294, 117, 88, 22, 402, 26, 269, 116, 145, 164, 6, 10, 488, 2, 44, 120, 4, 127, 144, 119, 704, 1058, 368, 104, 2, 6, 214, 4, 129, 2, 3, 301, 2, 2, 466, 20, 107, 280, 14, 337, 12, 22, 12, 242, 1705, 415, 10, 115, 50, 2, 420, 4, 15
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 14 2015

Keywords

Comments

Conjecture: a(n) exists for any n > 0. In general, any positive rational number r can be written as m/n, where m and n are positive integers such that prime(m)*prime(n) = prime(p)+2 for some prime p.
For example, 14/19 = 24528/33288, and prime(24528)*prime(33288) = 281153*392723 = 110415249619 = prime(4528436431)+2 with 4528436431 prime.
The conjecture implies that there are infinitely many primes p such that prime(p)+2 is a product of two primes. Recall that a prime p is called a Chen prime if p+2 is a product of at most two primes.

Examples

			a(2) = 60 since prime(60)*prime(60*2) = 281*659 = 185179 = prime(16763)+2 with 16763 prime.
		

References

  • Jing-run Chen, On the representation of a large even integer as the sum of a prime and a product of at most two primes, Sci. Sinica 16(1973), 157-176.
  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Prime[n]
    PQ[n_]:=PrimeQ[n]&&PrimeQ[PrimePi[n]]
    Do[k=0;Label[bb];k=k+1;If[PQ[f[k]*f[k*n]-2],Goto[aa],Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,1,70}]

A259488 Positive integers k with prime(k)+2 and prime(prime(k))+2 both prime.

Original entry on oeis.org

2, 3, 7, 13, 296, 343, 395, 405, 408, 463, 469, 473, 542, 572, 577, 584, 625, 671, 673, 695, 837, 984, 1016, 1030, 1074, 1165, 1224, 1230, 1328, 1410, 1445, 1679, 1825, 1860, 1867, 1949, 2078, 2091, 2095, 2123, 2167, 2476, 2478, 2616, 2753, 2764, 2956, 3011, 3065, 3416, 3621, 3646, 3712, 3720, 3758, 3872, 3926, 4063, 4071, 4079, 4133, 4217, 4312, 4351, 4524, 4745, 4855, 4865, 4882, 4922
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 28 2015

Keywords

Comments

The conjecture in A259487 essentially says that {a(m)/a(n): m,n = 1,2,3,...} coincides with the set of all positive rational numbers. This implies that the current sequence has infinitely many terms.

Examples

			a(1) = 2 since prime(2)+2 = 5 and prime(prime(2))+2 = prime(3)+2 = 7 are both prime, but prime(1)+2 = 4 is composite.
a(2) = 3 since prime(3)+2 = 7 and prime(prime(3))+2 = prime(7)+2 = 19 are both prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    n=0;Do[If[PrimeQ[Prime[k]+2]&&PrimeQ[Prime[Prime[k]]+2],n=n+1;Print[n," ",k]],{k,1,5000}]
    Select[Range[5000],AllTrue[{Prime[#]+2,Prime[Prime[#]]+2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 18 2018 *)
  • PARI
    k=pk=0; forprime(ppk=2,1e6, if(isprime(pk++),k++; if(isprime(pk+2) && isprime(ppk+2), print1(k", ")))) \\ Charles R Greathouse IV, Jun 29 2015

A261528 Least positive integer k such that both k and k*n belong to the set {m>0: prime(m)+2 is prime with prime(prime(m)+2) = prime(prime(m))+6}.

Original entry on oeis.org

2, 891, 81002, 814812, 86050, 5917, 65527, 109853, 2563344, 25379, 2640232, 266076, 775889, 67387, 68111, 37950, 353416, 347139, 56390, 11299, 89491, 545458, 910786, 353416, 1913477, 9025, 111569, 511796, 1456228, 37909, 1494675, 212092, 69352, 107769, 300657, 1155675, 391972, 1073031, 55074, 49892
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 23 2015

Keywords

Comments

Conjecture: Any positive rational number r can be written as m/n with m and n in the set {k>0: prime(k)+2 is prime with prime(prime(k)+2) = prime(prime(k))+6}.
This implies that there are infinitely many twin prime pairs {p, p+2} with prime(p+2) - prime(p) = 6.
Note that if prime(n+2)-prime(n) = 6 then prime(n+1)-prime(n) = 2 or 4.

Examples

			a(1) = 2 since 2*1 = 2, and prime(2)+2 = 3+2 = 5 is prime with prime(5)-prime(3) = 11-5 = 6.
a(2) = 891 since prime(891)+2 = 6947 + 2 = 6949 is prime with prime(6949)-prime(6947) = 70123-70117 = 6, and prime(891*2)+2 = 15269 + 2 = 15271 is prime with prime(15271)-prime(15269) = 167119-167113 = 6.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Prime[n]
    PQ[k_]:=PrimeQ[f[k]+2]&&f[f[k]+2]-f[f[k]]==6
    Do[k=0;Label[bb];k=k+1;If[PQ[k]&&PQ[k*n],Goto[aa],Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,1,40}]

A261295 Least positive integer k such that both k and k*n belong to the set {m>0: prime(m) = prime(p)+2 for some prime p}.

Original entry on oeis.org

3, 3, 6, 578, 18, 3, 6, 90, 1868, 374, 4, 674, 278, 3, 6, 114, 3534, 110, 6, 354, 4, 14, 28464, 2790, 84, 4452, 2802, 3, 6, 3, 90, 2820, 354, 110, 4080, 278, 44, 3, 2712, 18, 3012, 90, 14, 12672, 44, 14, 1572, 1124, 720, 42, 114, 44, 84, 2790, 42, 90, 42, 3, 6, 84, 44, 1572, 3068, 1742, 2394, 174, 110, 744, 3020, 578
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 14 2015

Keywords

Comments

Conjecture: (i) Any positive rational number r can be written as m/n with m and n in the set S = {k>0: prime(k) = prime(p)+2 for some prime p} = {p+1: p and prime(p)+2 are both prime}.
(ii) Any positive rational number r can be written as m/n with m and n in the set T = {k>0: prime(k) = prime(p)-2 for some prime p} = {p-1: p and prime(p)-2 are both prime}.
(iii) Any positive rational number r not equal to 1 can be written as m/n with m in S and n in T, where the sets S and T are given in parts (i) and (ii).
For example, 4/5 = 15648/19560 with 15647, prime(15647)+2 = 171763, 19559 and prime(19559)+2 = 219409 all prime; and 4/5 = 67536/84420 with 67537, prime(67537)-2 = 848849, 84421 and prime(84421)-2 = 1081937 all prime. Also, 4/5 = 8/10 with 7, prime(7)+2 = 19, 11 and prime(11)-2 = 29 all prime; and 5/4 = 8220/6576 with 8221, prime(8221)+2 = 84349, 6577 and prime(6577)-2 = 65837 all prime.

Examples

			a(3) = 6 since prime(6) = 13 = prime(5)+2 with 5 prime, and prime(6*3) = 61 = prime(17)+2 with 17 prime.
a(4) = 578 since prime(578) = 4219 = prime(577)+2 with 577 prime, and prime(578*4) = 20479 = prime(2311)+2 with 2311 prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Prime[n]
    PQ[n_]:=PrimeQ[n]&&PrimeQ[PrimePi[n]]
    Do[k=0;Label[bb];k=k+1;If[PQ[f[k]-2]&&PQ[f[k*n]-2],Goto[aa],Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,1,70}]

A261541 Least positive integer m such that both m and m*n belong to the set {k>0: prime(k)+2, prime(k)+6, prime(k)+8 are all prime}.

Original entry on oeis.org

3, 358712, 34772, 79631, 1822685, 22865, 2066, 2593722, 26, 3418900, 26, 711611, 286, 1493190, 882854, 513312, 1707237, 788232, 913695, 1980985, 7147, 443152, 479580, 2589105, 865432, 265243, 103641, 160536, 398360, 851672
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 24 2015

Keywords

Comments

Conjecture: (i) Each positive rational number r can be written as m/n with m and n in the set {k>0: prime(k)+2, prime(k)+6 and prime(k)+8 are all prime}.
(ii) Any positive rational number r can be written as m/n with m and n in the set {k>0: prime(k)+4, prime(k)+6 and prime(k)+10 are all prime}.
For example, 3/4 = 20723892/27631856, and prime(20723892)+2 = 387875561+2 = 387875563, prime(20723892)+6 = 387875567, prime(20723892)+8 = 387875569, prime(27631856)+2 = 525608591+2 =525608593, prime(27631856)+6 = 525608597, prime(27631856)+8 = 525608599 are all prime. Also, 3/4 = 599478/799304, and prime(599478)+4 = 8951857+4 = 8951861, prime(599478)+6 = 8951863, prime(599478)+10 = 8951867, prime(799304)+4 = 12183943+4 = 12183947, prime(799304)+6 = 12183949, prime(799304)+10 = 12183953 are all prime.
Part (i) of the conjecture implies that there are infinitely many primes p with p+2, p+6 and p+8 all prime, while part (ii) implies that there are infinitely many primes p with p+4, p+6 and p+10 all prime.

Examples

			a(1) = 3 since 3*1 = 3, and prime(3)+2 = 5+2 =7, prime(3)+6 = 11 and prime(3)+8 = 13 are all prime.
a(2) = 358712 since prime(358712)+2 = 5158031+2 = 5158033, prime(358712)+6 = 5158037, prime(358712)+8 = 5158039, prime(358712*2)+2 = 10852601+2 = 10852603, prime(358712*2)+6 = 10852607 and prime(358712*2)+8 = 10852609 are all prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Prime[n]
    PQ[k_]:=PrimeQ[f[k]+2]&&PrimeQ[f[k]+6]&&PrimeQ[f[k]+8]
    Do[k=0;Label[bb];k=k+1;If[PQ[k]&&PQ[k*n],Goto[aa],Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,1,30}]
Showing 1-9 of 9 results.