A259540 Least positive integer k such that k and k*n are terms of A259539.
60, 326940, 728700, 115020, 375258, 70920, 33150, 297990, 2340, 72870, 858, 1416210, 284130, 78978, 91368, 9438, 5547000, 767760, 1182918, 30468, 485208, 60, 7908810, 916188, 21522, 823968, 87720, 390210, 3252, 72870, 7878, 1823010, 1179990, 98010, 3462, 7878, 280590, 6870, 60, 434460
Offset: 1
Keywords
Examples
a(22) = 60 since 60 and 60*22 = 1320 are terms of A259539. In fact, 60-1 = 59, 60+1 = 61, prime(60)+2 = 283, 1320-1 = 1319, 1320+1 = 1321 and prime(1320)+2 = 10861 are all prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..2000
- Zhi-Wei Sun, Checking the conjecture for r = a/b with a,b = 1..100
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
PQ[k_]:=PrimeQ[Prime[k]+2]&&PrimeQ[Prime[Prime[k]+1]+2] QQ[n_]:=PrimeQ[n-1]&&PrimeQ[n+1]&&PrimeQ[Prime[n]+2] Do[k=0;Label[bb];k=k+1;If[PQ[k]&&QQ[n*(Prime[k]+1)], Goto[aa], Goto[bb]]; Label[aa]; Print[n, " ", Prime[k]+1];Continue,{n, 1, 40}]
Comments