cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A259712 Least positive integer k such that prime(k) + prime(k*n) is a square.

Original entry on oeis.org

1, 10, 2, 1, 1126, 60, 55, 691, 1, 24, 15, 640, 5, 41, 1, 671, 261, 3, 8, 219, 103, 1, 1843, 128, 2240, 4, 664, 12, 111, 275, 19, 576, 166, 5, 3, 13, 7462, 243, 1, 1599, 228, 6297, 128, 853, 995, 49, 164, 1, 116, 10, 40, 3971, 1741, 32, 338, 11992, 3, 39, 20, 24, 2, 465, 352, 24, 138, 241, 343, 177, 32, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 03 2015

Keywords

Comments

Conjecture: a(n) exists for any n > 0. In general, every positive rational number r can be written as m/n, where m and n are positive integers with prime(m) + prime(n) a square.
I have verified this conjecture for all those r = a/b with a,b = 1,...,700.

Examples

			a(2) = 10 since prime(10) + prime(10*2) = 29 + 71 = 10^2.
a(5) = 1126 since prime(1126) + prime(1126*5) = 9059 + 55457 = = 64516 = 254^2.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    Do[k=0;Label[bb];k=k+1;If[SQ[Prime[k]+Prime[k*n]],Goto[aa],Goto[bb]];Label[aa];Print[n," ",k];Continue,{n,1,70}]
    lpi[n_]:=Module[{k=1},While[!IntegerQ[Sqrt[Prime[k]+Prime[k*n]]],k++];k]; Array[ lpi,70] (* Harvey P. Dale, Sep 07 2022 *)

A255677 Least integer k > 1 such that pi(k)^2 + pi(k*n)^2 is a square, where pi(.) is the prime-counting function given by A000720.

Original entry on oeis.org

5, 30, 8458, 18, 252, 25, 1407, 476, 9098, 108, 1814, 1868, 153, 1005, 67, 26532, 1592, 200, 963, 99, 833, 1356, 3869, 981, 531, 127, 4961, 366, 1192, 1873, 41308, 409, 21756, 194664, 180, 27071, 7433, 160179, 2076, 544, 211, 10639, 19571, 33483, 603, 68380, 1517, 47529, 35923
Offset: 2

Views

Author

Zhi-Wei Sun, Jul 10 2015

Keywords

Comments

Conjecture: Each positive rational number r < 1 can be written as m/n with 1 < m < n such that pi(m)^2 + pi(n)^2 is a square. Also, any rational number r > 1 can be written as m/n with m > n > 1 such that pi(m)^2 - pi(n)^2 is a square.
For example, 23/24 = 19947716/20815008 with pi(19947716)^2 + pi(20815008)^2 = 1267497^2 + 1319004^2 = 1829295^2, and 7/3 = 26964/11556 with pi(26964)^2 - pi(11556)^2 = 2958^2 - 1392^2 = 2610^2.

Examples

			a(2) = 5 since pi(5)^2 + pi(5*2)^2 = 3^2 + 4^2 = 5^2.
a(3) = 30 since pi(30)^2 + pi(30*3)^2 = 10^2 + 24^2 = 26^2.
a(68) = 6260592 since pi(6260592)^2 + pi(6260592*68)^2 = 429505^2 + 22632876^2 = 22636951^2.
a(95) = 7955506 since pi(7955506)^2 + pi(7955506*95)^2 = 536984^2 + 38985687^2 = 38989385^2.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    Do[k=1;Label[aa];k=k+1;If[SQ[PrimePi[k]^2+PrimePi[k*n]^2],Goto[bb],Goto[aa]];Label[bb];Print[n," ",k];Continue,{n,2,50}]
  • PARI
    a(n)={ k=2; while(!issquare(primepi(k)^2 + primepi(k*n)^2),k++); return(k);}
    main(size)={ v=vector(size); for(i=2, size+1, v[i-1]=a(i)); return(v);} /* Anders Hellström, Jul 11 2015 */

A259678 Primes of the form p(k)^2 + p(m)^2, where k and m are positive integers, and p(.) is the partition function given by A000041.

Original entry on oeis.org

2, 5, 13, 29, 53, 229, 509, 709, 1021, 1789, 3137, 3257, 3361, 6829, 13337, 18229, 30977, 41177, 49201, 148229, 240101, 240109, 250301, 1004053, 1575029, 2511601, 3833989, 3851989, 5934121, 6314389, 9060109, 9148309, 13823549, 20842361, 31404937, 106714213, 116703973, 151536109, 221241901, 221743789, 230563789, 254416549, 323412629, 323799793, 332232629, 336996053, 468159773, 676780229, 676783361, 682714321
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 03 2015

Keywords

Comments

The conjecture in A259531 implies that the current sequence has infinitely many terms.

Examples

			a(1) = 2 since p(1)^2 + p(1)^2 = 2 is prime.
a(2) = 5 since p(1)^2 + p(2)^2 = 1^2 + 2^2 = 5 is prime.
a(3) = 13 since p(2)^2 + p(3)^2 = 2^2 + 3^2 = 13 is prime.
a(4) = 29 since p(2)^2 + p(4)^2 = 2^2 + 5^2 = 29 is prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=PartitionsP[n];
    tab={};Do[s=p[m]^2+p[k]^2;If[PrimeQ[s],tab=Append[tab,s]],{m,1,1600},{k,1,m}];
    LL:=LL=Sort[DeleteDuplicates[tab]];Do[Print[n,LL[[n]]],{n,1,10000}]
    Take[Select[Total/@Tuples[PartitionsP[Range[2000]]^2,2],PrimeQ]//Union,50] (* Harvey P. Dale, Jan 24 2025 *)

Extensions

Corrected and extended by Harvey P. Dale, Jan 24 2025

A261513 Least positive integer k with p(prime(k))+p(prime(k*n)) prime, where p(.) is the partition function given by A000041.

Original entry on oeis.org

1, 46, 1, 115, 1, 9, 4, 17, 1, 3, 12, 6, 5, 3, 2, 1253, 1035, 716, 4028, 6154, 9, 3, 1219, 94, 64, 195, 1545, 9909, 365, 52, 182, 76, 277, 135, 1321, 1619, 9693, 5485, 8001, 946, 1, 36, 7154, 10354, 1, 2157, 33, 1344, 1, 39, 1698, 732, 24505, 1, 637, 14, 8, 2127, 1460
Offset: 2

Views

Author

Zhi-Wei Sun, Aug 22 2015

Keywords

Comments

Conjecture: Any positive rational number r not equal to one can be written as m/n, where m and n are positive integers with p(prime(m)) + p(prime(n)) prime.
This implies that there are infinitely many primes of the form p(q) + p(r) with q and r both prime.

Examples

			a(2) = 1 since p(prime(1)) + p(prime(1*2)) = p(2) + p(3) = 2 + 3 = 5 is prime.
a(3) = 46 since p(prime(46)) + p(prime(46*3)) = p(199) + p(787) = 3646072432125 + 3223934948277725160271634798 = 3223934948277728806344066923 is prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=PartitionsP[Prime[n]]
    Do[k=0;Label[bb];k=k+1;If[PrimeQ[f[k]+f[k*n]],Goto[aa],Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,2,60}]
Showing 1-4 of 4 results.