A259496 Numbers n such that phi(n) + d(n) = phi(n+1) + d(n+1), where phi(n) is the Euler totient function of n and d(n) the number of divisors of n.
5, 7, 104, 105, 1754, 3255, 16215, 22935, 67431, 93074, 983775, 1025504, 2200694, 2619705, 3365438, 4163355, 4447064, 4695704, 6372794, 7838265, 9718904, 11903775, 23992215, 26879684, 29357475, 37239735, 40588485, 41207144, 48615735, 56424555, 76466985, 81591194, 83864055
Offset: 1
Keywords
Examples
phi(5) + d(5) = 4 + 2 = 6 and phi(6) + d(6) = 2 + 4 = 6. phi(7) + d(7) = 6 + 2 = 8 and phi(8) + d(8) = 4 + 4 = 8.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..600 (first 65 terms from Robert G. Wilson v)
Programs
-
Magma
[n: n in [1..6*10^6] | EulerPhi(n) + NumberOfDivisors(n) eq EulerPhi(n+1) + NumberOfDivisors(n+1)]; // Vincenzo Librandi, Jun 30 2015
-
Maple
with(numtheory): P:=proc(q) local n; for n from 1 to q do if phi(n)+tau(n)=phi(n+1)+tau(n+1) then print(n); fi; od; end: P(10^9);
-
Mathematica
a = k = 2; lst = {}; While[k < 100000001, b = EulerPhi[k] + DivisorSigma[0, k]; If[a == b, AppendTo[lst, k - 1]]; k++; a = b]; lst
Extensions
a(23)-a(33) from Robert G. Wilson v, Jul 05 2015
Comments