cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259496 Numbers n such that phi(n) + d(n) = phi(n+1) + d(n+1), where phi(n) is the Euler totient function of n and d(n) the number of divisors of n.

Original entry on oeis.org

5, 7, 104, 105, 1754, 3255, 16215, 22935, 67431, 93074, 983775, 1025504, 2200694, 2619705, 3365438, 4163355, 4447064, 4695704, 6372794, 7838265, 9718904, 11903775, 23992215, 26879684, 29357475, 37239735, 40588485, 41207144, 48615735, 56424555, 76466985, 81591194, 83864055
Offset: 1

Views

Author

Paolo P. Lava, Jun 29 2015

Keywords

Comments

So far, less than 10^9, except for 7, 67431 & 3365438, all terms have been congruent to 5 or 4 (mod 10). - Robert G. Wilson v, Jul 06 2015

Examples

			phi(5) + d(5) = 4 + 2 = 6 and phi(6) + d(6) = 2 + 4 = 6.
phi(7) + d(7) = 6 + 2 = 8 and phi(8) + d(8) = 4 + 4 = 8.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..6*10^6] | EulerPhi(n) + NumberOfDivisors(n) eq EulerPhi(n+1) + NumberOfDivisors(n+1)]; // Vincenzo Librandi, Jun 30 2015
  • Maple
    with(numtheory): P:=proc(q) local n; for n from 1 to q do
    if phi(n)+tau(n)=phi(n+1)+tau(n+1) then print(n); fi;
    od; end: P(10^9);
  • Mathematica
    a = k = 2; lst = {}; While[k < 100000001, b = EulerPhi[k] + DivisorSigma[0, k]; If[a == b, AppendTo[lst, k - 1]]; k++; a = b]; lst

Extensions

a(23)-a(33) from Robert G. Wilson v, Jul 05 2015