A259539 Numbers m with m-1, m+1 and prime(m)+2 all prime.
60, 828, 858, 1032, 1050, 1230, 1320, 1878, 2028, 2340, 3252, 3390, 3462, 4548, 5502, 6870, 6948, 7590, 7878, 8010, 9438, 9720, 9858, 10038, 10068, 10302, 11490, 11718, 13932, 14388, 15138, 15270, 15288, 16068, 16188, 16230, 17208, 17292, 17838, 17910
Offset: 1
Keywords
Examples
a(1) = 60 since 60-1 = 59, 60+1 = 61 and prime(60)+2 = 283 are all prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28-Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
n=0;Do[If[PrimeQ[k-1]&&PrimeQ[k+1]&&PrimeQ[Prime[k]+2],n=n+1;Print[n," ",k]],{k,1,18000}]
-
PARI
lista(nn) = {forprime(p=2, nn, if (isprime(p+2) && isprime(prime(p+1)+2), print1(p+1, ", ")));} \\ Michel Marcus, Jun 30 2015
Comments