A259541 Numbers n such that antisigma(n) is palindromic.
1, 2, 3, 4, 5, 6, 13, 23, 30, 31, 36, 109, 119, 158, 351, 1645, 1653, 2003, 3476, 3520, 3934, 4913, 8037, 9379, 35324, 36516, 91951, 128955, 200003, 390066, 402603, 1068869, 2000003, 2144992, 2467458, 2867828, 3392245, 3607663
Offset: 1
Examples
antisigma(1) = 1*2/2 - sigma(1) = 1 - 1 = 0; antisigma(13) = 13*14/2 - sigma(13) = 91 - 14 = 77; antisigma(109) = 109*110/2 - sigma(109) = 5995 - 110 = 5885.
Programs
-
Maple
with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end: P:=proc(q) local a,n; for n from 1 to q do a:=n*(n+1)/2-sigma(n); if a=T(a) then print(n); fi; od; end: P(10^9);
-
Mathematica
palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Select[Range@ 4000000, palQ[# (# + 1)/2 - DivisorSigma[1, #]] &] (* Michael De Vlieger, Jul 01 2015 *)
-
PARI
isok(n) = my(d = digits(n*(n+1)/2 - sigma(n))); Vecrev(d)==d; \\ Michel Marcus, Jul 01 2015
Comments