cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259568 Numbers following gaps in the sequence of base-4 numbers that don't contain 0.

Original entry on oeis.org

1, 5, 9, 13, 21, 25, 29, 37, 41, 45, 53, 57, 61, 85, 89, 93, 101, 105, 109, 117, 121, 125, 149, 153, 157, 165, 169, 173, 181, 185, 189, 213, 217, 221, 229, 233, 237, 245, 249, 253, 341, 345, 349, 357, 361, 365, 373, 377, 381, 405, 409, 413, 421, 425, 429, 437, 441, 445, 469, 473, 477, 485, 489, 493, 501, 505, 509, 597, 601, 605
Offset: 1

Views

Author

Sean Oneil, Jun 30 2015

Keywords

Comments

Partial sums for the convergent modified harmonic series in base 4 excluding 0 = Sum of 1/a(n) + 1/(a(n) + 1) + 1/(a(n) + 2) = Sum of (3*a(n)^2 + 6*a(n) + 2)/(a(n)*(a(n) + 1)*(a(n) + 2)).

Examples

			Pattern of numbers of skipped terms (numbers in base 4 with at least one zero) is 1 (4 = 10_4), 1 (8 = 20_4), 1 (12 = 30_4), 4+1 (16 = 100_4, 17 = 101_4, 18 = 102_4, 19 = 103_4, 20 = 110_4), 1, 1, 4+1, 1, 1, 4+1, 1, 1, 16+4+1, ...
		

Crossrefs

Subset of A016813 (congruent to 1 mod 4). a(n) = A023705(3n - 2). Each term is one more than the numbers that follow gaps in A196032.

Programs

  • PARI
    lista(nn)=prec0 = 1; for(n=1, nn, if (vecmin(digits(n, 4)), if (prec0, print1(n,, ", ")); prec0 = 0, prec0 = 1);); \\ Michel Marcus, Aug 03 2015