A259573 Number of distinct differences in row n of the reciprocity array of 0.
1, 2, 3, 4, 3, 4, 3, 6, 5, 6, 3, 8, 3, 6, 7, 8, 3, 8, 3, 8, 9, 6, 3, 12, 5, 6, 7, 10, 3, 14, 3, 10, 9, 6, 9, 14, 3, 6, 9, 12, 3, 12, 3, 12, 11, 6, 3, 18, 5, 10, 9, 12, 3, 12, 9, 14, 9, 6, 3, 22, 3, 6, 13, 12, 9, 14, 3, 12, 9, 14, 3, 18, 3, 6, 13, 12, 9, 16
Offset: 1
Examples
In the array at A259572, row 4 is (0,2,3,6,6,8,9,12,12,14,15,...), with differences (2,1,3,0,2,1,3,0,2,1,3,0, ...), and distinct differences {0,1,2,3}, so that a(4) = 4. Example corrected by _Antti Karttunen_, Nov 30 2021
References
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989, pages 90-94.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
x = 0; s[m_, n_] := Sum[Floor[(n*k + x)/m], {k, 0, m - 1}]; t[m_] := Table[s[m, n], {n, 1, 1000}]; u = Table[Length[Union[Differences[t[m]]]], {m, 1, 120}] (* A259573 *)
-
PARI
A259572(m,n) = ((m*n - m - n + gcd(m,n))/2); \\ After Witold Dlugosz's formula for A259572. A259573(n) = #Set(vector(n,k,A259572(n,1+k)-A259572(n,k))); \\ Antti Karttunen, Nov 30 2021
Comments