A259576 Number of distinct differences in row n of the reciprocity array of 1.
1, 2, 1, 2, 3, 4, 3, 4, 3, 6, 3, 6, 3, 6, 5, 6, 3, 8, 3, 8, 5, 6, 3, 10, 5, 6, 5, 10, 3, 10, 3, 8, 5, 6, 7, 14, 3, 6, 5, 12, 3, 12, 3, 10, 11, 6, 3, 14, 5, 10, 5, 10, 3, 12, 9, 12, 5, 6, 3, 18, 3, 6, 11, 10, 9, 14, 3, 10, 5, 16, 3, 18, 3, 6, 9, 10, 7, 14, 3
Offset: 1
Examples
In the array at A259575, row 6 is (1,3,6,8,11,15,16,18,...), with differences (2,3,2,3,4,1,2,...), and distinct differences {1,2,3,4}, so that a(6) = 4.
References
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989, pages 90-94.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
x = 1; s[m_, n_] := Sum[Floor[(n*k + x)/m], {k, 0, m - 1}]; t[m_] := Table[s[m, n], {n, 1, 1000}]; u = Table[Length[Union[Differences[t[m]]]], {m, 1, 120}] (* A259576 *)
-
PARI
A259575sq(m,n) = sum(k=0,m-1,(1+(n*k))\m); A259576(n) = #Set(vector(n,k,A259575sq(n,1+k)-A259575sq(n,k))); \\ Antti Karttunen, Mar 02 2023
Comments