A259577 Sum of numbers in the n-th antidiagonal of the reciprocity array of 1.
1, 2, 6, 13, 26, 44, 72, 108, 156, 215, 290, 381, 486, 610, 758, 924, 1112, 1329, 1566, 1839, 2134, 2456, 2816, 3220, 3640, 4099, 4608, 5153, 5726, 6368, 7020, 7744, 8504, 9305, 10180, 11103, 12042, 13060, 14146, 15296, 16460, 17739, 19026, 20421, 21876
Offset: 1
Keywords
References
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989, pages 90-94.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
f[n_] := Sum[Floor[(n*k + 1)/m], {m, n}, {k, 0, m - 1}]; Array[f, 50]
-
PARI
a(n)=x=1;r=0;for(m=1,n,for(k=0,m-1,r=r+floor((n*k+x)/m)));return(r); main(size)=return(vector(size,n,a(n))) \\ Anders Hellström, Jul 06 2015
-
PARI
a(n)=sum(m=1,n, sum(k=0,m-1, (n*k+1)\m)) \\ Charles R Greathouse IV, Mar 22 2017
Formula
a(n) = Sum_{m=1..n} Sum_{k=0..m-1} floor((n*k + x)/m), where x = 1.
a(n) = n^3 / 4 + O(n^2). - Charles R Greathouse IV, Mar 22 2017
Comments