A259578 Reciprocity array of 2; rectangular, read by antidiagonals.
2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 4, 3, 4, 2, 2, 4, 5, 5, 4, 2, 2, 5, 6, 6, 6, 5, 2, 2, 5, 6, 8, 8, 6, 5, 2, 2, 6, 8, 10, 10, 10, 8, 6, 2, 2, 6, 9, 11, 12, 12, 11, 9, 6, 2, 2, 7, 9, 12, 14, 15, 14, 12, 9, 7, 2, 2, 7, 11, 14, 16, 17, 17, 16, 14, 11, 7, 2, 2, 8
Offset: 1
Examples
Northwest corner: 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 5 5 6 6 7 2 3 3 5 6 6 8 9 9 11 2 4 5 6 8 10 11 12 14 16 2 4 6 8 10 12 14 16 18 20 2 5 6 10 12 15 17 20 21 25
References
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989, pages 90-94.
Links
- Clark Kimberling, Antidiagonals n=1..60, flattened
Programs
-
Mathematica
x = 2; s[m_, n_] := Sum[Floor[(n*k + x)/m], {k, 0, m - 1}]; TableForm[ Table[s[m, n], {m, 1, 15}, {n, 1, 15}]] u = Table[s[n - k + 1, k], {n, 15}, {k, n, 1, -1}] // Flatten
Formula
T(m,n) = Sum_{k=0..m-1} [(n*k+x)/m] = Sum_{k=0..n-1} [(m*k+x)/n], where x = 2 and [ ] = floor. Note that if [x] = [y], then [(n*k+x)/m] = [(n*k+y)/m], so that the reciprocity arrays for x and y are identical.
Comments