A259596 Denominators of the other-side convergents to sqrt(7).
1, 2, 3, 5, 17, 31, 48, 79, 271, 494, 765, 1259, 4319, 7873, 12192, 20065, 68833, 125474, 194307, 319781, 1097009, 1999711, 3096720, 5096431, 17483311, 31869902, 49353213, 81223115, 278635967, 507918721, 786554688, 1294473409, 4440692161, 8094829634
Offset: 0
Examples
For r = sqrt(7), 3, 5/2, 8/3, 13/5, 45/17, 82/31, 127/48. A comparison of convergents with other-side convergents: i p(i)/q(i) P(i)/Q(i) p(i)*Q(i)-P(i)*q(i) 0 2/1 < sqrt(7) < 3/1 -1 1 3/1 > sqrt(7) > 5/2 1 2 5/2 < sqrt(7) < 8/3 -1 3 8/3 > sqrt(7) > 13/5 1 4 37/14 < sqrt(7) < 45/17 -1 5 45/17 > sqrt(7) > 83/31 1
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,16,0,0,0,-1).
Programs
-
Mathematica
r = Sqrt[7]; a[i_] := Take[ContinuedFraction[r, 35], i]; b[i_] := ReplacePart[a[i], i -> Last[a[i]] + 1]; t = Table[FromContinuedFraction[b[i]], {i, 1, 35}] u = Denominator[t] LinearRecurrence[{0,0,0,16,0,0,0,-1},{1,2,3,5,17,31,48,79},40] (* Harvey P. Dale, Jun 03 2017 *)
-
PARI
Vec(-(x+1)*(x^2-x-1)*(x^4+3*x^2+1)/(x^8-16*x^4+1) + O(x^50)) \\ Colin Barker, Jul 21 2015
Formula
p(i)*Q(i) - P(i)*q(i) = (-1)^(i+1), for i >= 0, where a(i) = Q(i).
a(n) = 16*a(n-4) - a(n-8) for n>7. - Colin Barker, Jul 21 2015
G.f.: -(x+1)*(x^2-x-1)*(x^4+3*x^2+1) / (x^8-16*x^4+1). - Colin Barker, Jul 21 2015
Comments