A259597 Numerators of the other-side convergents to sqrt(7).
3, 5, 8, 13, 45, 82, 127, 209, 717, 1307, 2024, 3331, 11427, 20830, 32257, 53087, 182115, 331973, 514088, 846061, 2902413, 5290738, 8193151, 13483889, 46256493, 84319835, 130576328, 214896163, 737201475, 1343826622, 2081028097, 3424854719, 11748967107
Offset: 0
Examples
For r = sqrt(7), 3, 5/2, 8/3, 13/5, 45/17, 82/31, 127/48. A comparison of convergents with other-side convergents: i p(i)/q(i) P(i)/Q(i) p(i)*Q(i)-P(i)*q(i) 0 2/1 < sqrt(7) < 3/1 -1 1 3/1 > sqrt(7) > 5/2 1 2 5/2 < sqrt(7) < 8/3 -1 3 8/3 > sqrt(7) > 13/5 1 4 37/14 < sqrt(7) < 45/17 -1 5 45/17 > sqrt(7) > 83/31 1
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,16,0,0,0,-1).
Programs
-
Mathematica
r = Sqrt[7]; a[i_] := Take[ContinuedFraction[r, 35], i]; b[i_] := ReplacePart[a[i], i -> Last[a[i]] + 1]; t = Table[FromContinuedFraction[b[i]], {i, 1, 35}] v = Numerator[t] LinearRecurrence[{0,0,0,16,0,0,0,-1},{3,5,8,13,45,82,127,209},40] (* Harvey P. Dale, Jan 15 2017 *)
-
PARI
Vec((x^7-x^6+2*x^5-3*x^4+13*x^3+8*x^2+5*x+3)/(x^8-16*x^4+1) + O(x^50)) \\ Colin Barker, Jul 21 2015
Formula
p(i)*Q(i) - P(i)*q(i) = (-1)^(i+1), for i >= 0, where a(i) = Q(i).
a(n) = 16*a(n-4) - a(n-8) for n>7. - Colin Barker, Jul 21 2015
G.f.: (x^7-x^6+2*x^5-3*x^4+13*x^3+8*x^2+5*x+3) / (x^8-16*x^4+1). - Colin Barker, Jul 21 2015
Comments