cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A259542 a(1) = 1, for n > 1 a(n) = smallest number not already in the sequence such that the arithmetic mean of two neighboring terms is a triangular number.

Original entry on oeis.org

1, 5, 7, 13, 17, 3, 9, 11, 19, 23, 33, 39, 51, 21, 35, 37, 53, 57, 15, 27, 29, 43, 47, 25, 31, 41, 49, 61, 71, 85, 97, 59, 73, 83, 99, 111, 45, 65, 67, 89, 93, 63, 69, 87, 95, 115, 125, 147, 159, 81, 75, 107, 103, 79, 77, 55, 101, 109, 131, 141, 165, 177
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 30 2015

Keywords

Comments

A259604(n) = (a(n) + a(n+1)) / 2;
conjecture: sequence is a permutation of the odd numbers, see also A259260, A259429;
a(A259543(n)) = 2*n-1.

Crossrefs

Programs

  • Haskell
    import Data.List (delete)
    a259542 n = a259542_list !! (n-1)
    a259542_list = 1 : f 1 [3, 5 ..] where
       f x zs = g zs where
         g (y:ys) = if a010054 ((x + y) `div` 2) == 1
                       then y : f y (delete y zs) else g ys

A259602 (A259260(n) + A259260(n+1)) / 2.

Original entry on oeis.org

4, 9, 16, 25, 16, 4, 9, 16, 25, 36, 25, 16, 25, 36, 49, 64, 81, 100, 64, 16, 25, 36, 49, 64, 81, 64, 36, 49, 64, 81, 100, 81, 64, 81, 100, 121, 144, 169, 196, 144, 64, 100, 144, 81, 36, 49, 64, 81, 64, 49, 64, 81, 100, 121, 144, 169, 144, 121, 100, 64, 81
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 30 2015

Keywords

Comments

All terms are squares by definition of A259260.

Crossrefs

Programs

  • Haskell
    a259602 n = a259602_list !! (n-1)
    a259602_list = zipWith ((flip div 2 .) . (+))
                           a259260_list $ tail a259260_list

A259603 a(n) = (A259429(n) + A259429(n+1)) / 2.

Original entry on oeis.org

8, 27, 64, 125, 216, 343, 216, 27, 64, 125, 216, 343, 216, 27, 64, 125, 216, 343, 216, 27, 64, 125, 216, 343, 216, 27, 64, 125, 216, 343, 216, 27, 64, 125, 216, 343, 216, 64, 125, 216, 343, 512, 343, 64, 125, 216, 125, 8, 27, 64, 125, 216, 343, 216, 8, 27
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 30 2015

Keywords

Comments

All terms are cubes by definition of A259260.

Crossrefs

Programs

  • Haskell
    a259603 n = a259603_list !! (n-1)
    a259603_list = zipWith ((flip div 2 .) . (+))
                           a259429_list $ tail a259429_list

A259605 (A259565(n) + A259565(n+1)) / 2.

Original entry on oeis.org

2, 5, 6, 7, 10, 13, 14, 15, 19, 22, 21, 22, 26, 29, 30, 31, 34, 37, 38, 39, 42, 46, 47, 46, 51, 53, 55, 58, 55, 57, 62, 65, 66, 67, 70, 73, 74, 77, 79, 78, 82, 86, 85, 86, 91, 94, 93, 94, 101, 102, 101, 102, 105, 110, 109, 110, 114, 118, 119, 118, 122, 127
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 30 2015

Keywords

Comments

All terms are squarefree by definition of A259565.

Crossrefs

Programs

  • Haskell
    a259605 n = a259605_list !! (n-1)
    a259605_list = zipWith ((flip div 2 .) . (+))
                           a259565_list $ tail a259565_list

A086518 Primes arising as the arithmetic mean of a pair of successive terms of A086517.

Original entry on oeis.org

2, 5, 11, 13, 17, 29, 31, 23, 29, 41, 37, 41, 53, 59, 61, 53, 59, 73, 71, 73, 83, 89, 97, 101, 97, 89, 97, 109, 113, 127, 131, 137, 131, 127, 131, 127, 137, 149, 157, 163, 173, 181, 167, 157, 167, 173, 181, 191, 193, 197, 211, 223, 229, 223, 211, 223, 241, 227, 223
Offset: 1

Views

Author

Amarnath Murthy, Jul 30 2003

Keywords

Examples

			2 = (1+3)/2, 11 = (7+15)/2, etc.
		

Crossrefs

Programs

  • Haskell
    a086518 n = a086518_list !! (n-1)
    a086518_list = zipWith ((flip div 2 .) . (+))
                           a086517_list $ tail a086517_list
    -- Reinhard Zumkeller, Jun 30 2015
  • PARI
    v=[1]; n=1; while(n<100, s=(n+v[#v])/2; if(type(s)=="t_INT", if(isprime(s)&&!vecsearch(vecsort(v), n), print1(s,", "); v=concat(v, n); n=0)); n++) \\ Derek Orr, Jun 16 2015
    

Formula

a(n) = (A086517(n)+A086517(n+1))/2. - David Wasserman, Mar 10 2005

Extensions

More terms from David Wasserman, Mar 10 2005
Showing 1-5 of 5 results.