cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259628 Numbers m with m-1, m+1, prime(m)+2, prime(m)-m, prime(m)+m, m*prime(m)-1 and m*prime(m)+1 all prime.

Original entry on oeis.org

2523708, 6740478, 6759030, 14655522, 22885698, 28384200, 44630148, 71742300, 87002328, 87466500, 89842200, 153110622, 153647490, 184373490, 283232040, 312124920, 366318960, 408770670, 412216920, 439429128, 456486030, 486730398, 517602600, 606159978, 607942848, 675661080, 855983352, 869593998, 923864562, 971400672
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 01 2015

Keywords

Comments

Conjecture: The sequence contains infinitely many terms.
This is stronger than the conjectures in A232861 and A259539.

Examples

			a(1) = 2523708 since the seven numbers 2523707, 2523709, prime(2523708)+2 = 41578739+2 = 41578741, prime(2523708)-2523708 = 41578739-2523708 = 39055031, prime(2523708)+2523708 = 41578739+2523708 = 44102447, 2523708*prime(2523708)-1 = 2523708*41578739-1 = 104932596244211 and 2523708*prime(2523708)+1 = 2523708*41578739+1 = 104932596244213 are all prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28-Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    TW[n_]:=PrimeQ[n-1]&&PrimeQ[n+1]
    n=0;Do[If[PrimeQ[Prime[k]+2]&&PrimeQ[Prime[Prime[k]+1]+2]&&PrimeQ[Prime[Prime[k]+1]-Prime[k]-1]&&PrimeQ[Prime[Prime[k]+1]+Prime[k]+1]&&TW[(Prime[k]+1)Prime[Prime[k]+1]],n=n+1;Print[n," ",Prime[k]+1]],{k,1,5*10^7}]
    allprQ[n_]:=Module[{p=Prime[n]},AllTrue[{n-1,n+1,p+2,p-n,p+n,n*p-1, n*p+1}, PrimeQ]]; Select[Range[98*10^7],allprQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 26 2016 *)