A259628 Numbers m with m-1, m+1, prime(m)+2, prime(m)-m, prime(m)+m, m*prime(m)-1 and m*prime(m)+1 all prime.
2523708, 6740478, 6759030, 14655522, 22885698, 28384200, 44630148, 71742300, 87002328, 87466500, 89842200, 153110622, 153647490, 184373490, 283232040, 312124920, 366318960, 408770670, 412216920, 439429128, 456486030, 486730398, 517602600, 606159978, 607942848, 675661080, 855983352, 869593998, 923864562, 971400672
Offset: 1
Keywords
Examples
a(1) = 2523708 since the seven numbers 2523707, 2523709, prime(2523708)+2 = 41578739+2 = 41578741, prime(2523708)-2523708 = 41578739-2523708 = 39055031, prime(2523708)+2523708 = 41578739+2523708 = 44102447, 2523708*prime(2523708)-1 = 2523708*41578739-1 = 104932596244211 and 2523708*prime(2523708)+1 = 2523708*41578739+1 = 104932596244213 are all prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28-Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..160
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
TW[n_]:=PrimeQ[n-1]&&PrimeQ[n+1] n=0;Do[If[PrimeQ[Prime[k]+2]&&PrimeQ[Prime[Prime[k]+1]+2]&&PrimeQ[Prime[Prime[k]+1]-Prime[k]-1]&&PrimeQ[Prime[Prime[k]+1]+Prime[k]+1]&&TW[(Prime[k]+1)Prime[Prime[k]+1]],n=n+1;Print[n," ",Prime[k]+1]],{k,1,5*10^7}] allprQ[n_]:=Module[{p=Prime[n]},AllTrue[{n-1,n+1,p+2,p-n,p+n,n*p-1, n*p+1}, PrimeQ]]; Select[Range[98*10^7],allprQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 26 2016 *)
Comments