cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259655 Expansion of psi(x^2) * f(-x^3)^3 / f(-x) in powers of x where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 3, 1, 4, 1, 5, 2, 5, 2, 5, 3, 7, 1, 7, 2, 9, 3, 7, 2, 6, 4, 11, 3, 8, 3, 10, 3, 8, 4, 9, 3, 14, 2, 10, 2, 15, 6, 7, 5, 7, 3, 14, 5, 14, 3, 16, 5, 8, 4, 13, 5, 13, 3, 12, 4, 18, 5, 14, 4, 13, 5, 15, 4, 15, 5, 16, 7, 9, 6, 11, 7, 22, 3, 16, 3, 19, 7, 16
Offset: 0

Views

Author

Michael Somos, Jul 02 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + x + 3*x^2 + x^3 + 4*x^4 + x^5 + 5*x^6 + 2*x^7 + 5*x^8 + ...
G.f. = q^7 + q^19 + 3*q^31 + q^43 + 4*q^55 + q^67 + 5*q^79 + 2*q^91 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] QPochhammer[ -x^2, x^2]^2 QPochhammer[ x^3]^3, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^3 EllipticTheta[ 2, 0, x] / (2 x^(1/4) QPochhammer[ x]), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^4 + A)^2 / (eta(x + A) * eta(x^2 + A)), n))};

Formula

Expansion of psi(x^2) * c(x) / (3 * x^(1/3)) in powers of x where psi() is a Ramanujan theta function and c() is a cubic AGM function.
Expansion of f(-x^3)^3 / (chi(-x) * chi(-x^2)^2) in powers of x where chi(), f() are Ramanujan theta functions.
Expansion of q^(-7/12) * eta(q^3)^3 * eta(q^4)^2 / (eta(q) * eta(q^2)) in powers of q.
Euler transform of period 12 sequence [ 1, 2, -2, 0, 1, -1, 1, 0, -2, 2, 1, -3, ...].
G.f.: Product_{k>0} (1 + x^k) * (1 + x^(2*k))^2 * (1 - x^(3*k))^3.
a(2*n) = A185220(n). a(2*n + 1) = A181648(n).