A259655 Expansion of psi(x^2) * f(-x^3)^3 / f(-x) in powers of x where psi(), f() are Ramanujan theta functions.
1, 1, 3, 1, 4, 1, 5, 2, 5, 2, 5, 3, 7, 1, 7, 2, 9, 3, 7, 2, 6, 4, 11, 3, 8, 3, 10, 3, 8, 4, 9, 3, 14, 2, 10, 2, 15, 6, 7, 5, 7, 3, 14, 5, 14, 3, 16, 5, 8, 4, 13, 5, 13, 3, 12, 4, 18, 5, 14, 4, 13, 5, 15, 4, 15, 5, 16, 7, 9, 6, 11, 7, 22, 3, 16, 3, 19, 7, 16
Offset: 0
Keywords
Examples
G.f. = 1 + x + 3*x^2 + x^3 + 4*x^4 + x^5 + 5*x^6 + 2*x^7 + 5*x^8 + ... G.f. = q^7 + q^19 + 3*q^31 + q^43 + 4*q^55 + q^67 + 5*q^79 + 2*q^91 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] QPochhammer[ -x^2, x^2]^2 QPochhammer[ x^3]^3, {x, 0, n}]; a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^3 EllipticTheta[ 2, 0, x] / (2 x^(1/4) QPochhammer[ x]), {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^4 + A)^2 / (eta(x + A) * eta(x^2 + A)), n))};
Formula
Expansion of psi(x^2) * c(x) / (3 * x^(1/3)) in powers of x where psi() is a Ramanujan theta function and c() is a cubic AGM function.
Expansion of f(-x^3)^3 / (chi(-x) * chi(-x^2)^2) in powers of x where chi(), f() are Ramanujan theta functions.
Expansion of q^(-7/12) * eta(q^3)^3 * eta(q^4)^2 / (eta(q) * eta(q^2)) in powers of q.
Euler transform of period 12 sequence [ 1, 2, -2, 0, 1, -1, 1, 0, -2, 2, 1, -3, ...].
G.f.: Product_{k>0} (1 + x^k) * (1 + x^(2*k))^2 * (1 - x^(3*k))^3.
Comments