cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259662 Expansion of phi(-q^3) / phi(-q)^3 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 6, 24, 78, 222, 576, 1392, 3180, 6936, 14550, 29520, 58176, 111750, 209820, 385968, 696960, 1237470, 2163456, 3728904, 6343068, 10658880, 17708412, 29108880, 47373696, 76378992, 122058870, 193435248, 304134558, 474609180, 735374016, 1131698448, 1730375436
Offset: 0

Views

Author

Michael Somos, Jul 02 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 6*x + 24*x^2 + 78*x^3 + 222*x^4 + 576*x^5 + 1392*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^3] / EllipticTheta[ 4, 0, x]^3, {x, 0, n}];
    nmax=60; CoefficientList[Series[Product[(1+x^k)^3 * (1-x^(3*k)) / ((1+x^(3*k)) * (1-x^k)^3),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A)^2 / (eta(x + A)^6 * eta(x^6 + A)), n))};

Formula

Expansion of 1 / (2*a(q^2) - a(q)) = b(q^2) / b(q)^2 in powers of q where a(), b() are cubic AGM theta functions.
Expansion of eta(q^2)^3 * eta(q^3)^2 / (eta(q)^6 * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ 6, 3, 4, 3, 6, 2, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = w^2*(u + v)^2 - 2*u*v^2*(v+w).
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 432^(-1/2) (t/I)^-1 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A258093.
G.f.: Product_{k>0} (1 + x^k)^3 * (1 - x^(3*k)) / ((1 + x^(3*k)) * (1 - x^k)^3).
a(n) = A132974(2*n) = A132979(2*n).
Convolution inverse of A122859.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(5/4) * n^(5/4)). - Vaclav Kotesovec, Oct 14 2015