cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259667 Catalan numbers mod 6.

Original entry on oeis.org

1, 1, 2, 5, 2, 0, 0, 3, 2, 2, 2, 4, 4, 4, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 1, 0, 0, 0, 4, 4, 4, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 4, 0, 0, 0, 4, 4, 4, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 2, 2, 2, 0, 0, 0, 2, 2, 2, 4
Offset: 0

Views

Author

M. F. Hasler, Nov 08 2015

Keywords

Comments

The only odd terms are those with indices n = 2^k - 1 (k = 0, 1, 2, 3, ...); see also A038003.
It is conjectured that the only k which yield a(2^k-1) = 1 are k = 0, 1 and 5. Are there other k than 2 and 8 that yield a(2^k-1) = 5? Otherwise said, is a(2^k-1) = 3 for all k > 8?
The question is equivalent to: does 2^k - 1 always contain a digit 2 when converted into base 3 for all k > 8? Similar conjecture has been proposed for 2^k, see A004642. - Jianing Song, Sep 04 2018

Crossrefs

Programs

  • Mathematica
    Mod[CatalanNumber[Range[0,120]],6] (* Harvey P. Dale, Oct 24 2020 *)
  • PARI
    a(n)=binomial(2*n,n)/(n+1)%6
    
  • PARI
    A259667(n)=lift(if(n%3!=1,binomod(2*n+1,n,6)/(2*n+1), if(bittest(n,0),binomod(2*n,n-1,6)/n,binomod(2*n,n,6)/(n+1)))) \\ using binomod.gp by M. Alekseyev, cf. Links.

Formula

a(n) = A000108(n) mod 6.