A259689 Irregular triangle read by rows: T(n,k) is the number of degree-n permutations without overlaps which furnish k new permutations without overlaps upon the addition of an (n+1)st element, 2 <= k <= 1 + floor(n/2).
1, 2, 2, 2, 6, 4, 10, 10, 4, 32, 26, 8, 68, 64, 34, 8, 220, 186, 82, 16, 528, 488, 276, 98, 16, 1724, 1484, 744, 226, 32, 4460, 4086, 2382, 980, 258, 32, 14664, 12752, 6822, 2498, 578, 64, 39908, 36384, 21616, 9576, 3088, 642, 64, 131944, 115508, 64264, 26040, 7552, 1410, 128
Offset: 2
Examples
Triangle begins, n >= 2, 2 <= k <= 1 + floor(n/2): 1; 2; 2, 2; 6, 4; 10, 10, 4; 32, 26, 8; 68, 64, 34, 8; 220, 186, 82, 16; 528, 488, 276, 98, 16; 1724, 1484, 744, 226, 32; 4460, 4086, 2382, 980, 258, 32; ...
References
- A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949.
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..170
- Albert Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949. [Annotated scanned copy]
Formula
Sum_{k>=2} k*T(n,k) = A000682(n + 1). - Andrew Howroyd, Dec 07 2018
T(n, floor(n/2)) = 2^floor((n-1)/2)*(n-4)+2. - Roger Ford, Dec 04 2018
For n>2, T(n, floor((n+2)/2)) = 2^(floor((n-1)/2)). - Roger Ford, Aug 18 2023
Extensions
Terms a(22) and beyond from Andrew Howroyd, Dec 05 2018
Comments