A259753 For increasing z > 0, integers, y - x, where x^3 + y^3 = z^3 + 1, with y > x > 1.
1, 30, 71, 100, 104, 485, 1169, 705, 887, 1727, 421, 775, 4499, 4260, 3180, 5748, 9719, 307, 6092, 18521, 20304, 18825, 32255, 6174, 33082, 7601, 29400, 17607, 13457, 52487, 1727, 44794, 41772, 76328, 1801, 29707, 80999, 119789, 111226, 132105, 122730, 171071, 123117, 237275
Offset: 1
Keywords
Examples
10 - 9 = 1 is the first number in the sequence because 10^3 + 9^3 = 12^3 + 1^3 and no other lower z produces a result.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..368
Programs
-
Maple
Cubes:= {seq(x^3, x=2..10^4)}: count:= 0: for z from 1 to 10^4 do s:= z^3+1; M:= map(t -> s-t, select(`<`,Cubes,floor(s/2))) intersect Cubes; for m in M do count:= count+1; y:= simplify(m^(1/3)); x:= simplify((s-m)^(1/3)); A[count]:= y-x; od od: seq(A[i],i=1..count); # Robert Israel, Oct 13 2015
-
Mathematica
y = 3; lst = {}; While[y < 100001, x = 2; While[x < y, z = (y^3 + x^3 - 1)^(1/3); If[IntegerQ[z], AppendTo[lst, {z, y, x, y - x}]; Print[{z, y, x, y - x}]]; x++]; y++]; Last@ Transpose@ Sort@ lst (* Robert G. Wilson v, Jul 21 2015 and modified Oct 14 2015 *)
Comments