A259761 Expansion of (phi(x)^2 + phi(x^9)^2) / 2 in powers of x where phi() is a Ramanujan theta function.
1, 2, 2, 0, 2, 4, 0, 0, 2, 4, 4, 0, 0, 4, 0, 0, 2, 4, 4, 0, 4, 0, 0, 0, 0, 6, 4, 0, 0, 4, 0, 0, 2, 0, 4, 0, 4, 4, 0, 0, 4, 4, 0, 0, 0, 8, 0, 0, 0, 2, 6, 0, 4, 4, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 2, 8, 0, 0, 4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 8, 0
Offset: 0
Examples
G.f. = 1 + 2*x + 2*x^2 + 2*x^4 + 4*x^5 + 2*x^8 + 4*x^9 + 4*x^10 + 4*x^13 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Programs
-
Magma
A := Basis( ModularForms( Gamma1(36), 1), 87); A[1] + 2*A[2] + 2*A[3] + 2*A[5] + 4*A[6] + 2*A[9] + 4*A[10] + 4*A[11] + 4*A[14] + 2*A[17] + 4*A[18] + 4*A[19];
-
Mathematica
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x]^2 + EllipticTheta[ 3, 0, x^9]^2) / 2, {x, 0, n}]; a[ n_] := If[ n < 1, Boole[n == 0], 2 Times @@ ( Which[ # < 3, 1, # == 3, 1 + (-1)^#2, Mod[#, 12] < 6, #2 + 1, True, (1 + (-1)^#2) / 2 ] & @@@ FactorInteger[n])];
-
PARI
{a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 1 + (-1)^e, p%12>6, (1 + (-1)^e) / 2, e+1)))};
Formula
phi(x) = 1 + 2*Sum_{m=1..oo} x^(m^2). - N. J. A. Sloane, Jan 30 2017
Expansion of phi(x) * phi(x^9) + 2 * x^2 * chi(x^3)^2 * psi(-x^9)^2 in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
a(n) = 2 * b(n) with a(0) = 1 and b() is multiplicative with b(2^e) = 1, b(3^e) = 1 + (-1)^e if e>0, b(p^e) = e+1 if p == 1, 5 (mod 12), (p^e) = (1 + (-1)^e)/2 if p == 7, 11 (mod 12).
a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5*Pi/9 = 1.745329... (= 100 * A019685). - Amiram Eldar, Dec 29 2023
Comments