A259775 Stepped path in P(k,n) array of k-th partial sums of squares (A000290).
1, 5, 6, 20, 27, 77, 112, 294, 450, 1122, 1782, 4290, 7007, 16445, 27456, 63206, 107406, 243542, 419900, 940576, 1641486, 3640210, 6418656, 14115100, 25110020, 54826020, 98285670, 213286590, 384942375
Offset: 1
Examples
The array of k-th partial sums of squares begins: [1], [5], 14, 30, 55, 91, ... A000330 1, [6], [20], 50, 105, 196, ... A002415 1, 7, [27], [77], 182, 378, ... A005585 1, 8, 35, [112], [294], 672, ... A040977 1, 9, 44, 156, [450], [1122], ... A050486 1, 10, 54, 210, 660, [1782], ... A053347 This is essentially A110813 without its first two columns.
Programs
-
Mathematica
Table[DifferenceRoot[Function[{a, n}, {(-9168 - 14432*n - 8412*n^2 - 2152*n^3 - 204*n^4)*a[n] +(-1332 - 1902*n - 792*n^2 - 102*n^3)*a[1 + n] + (2100 + 3884*n + 2493*n^2 + 640*n^3 + 51*n^4)*a[2 + n] == 0, a[1] == 1 , a[2] == 5}]][n], {n, 29}]
Formula
Conjecture: -(n+5)*(13*n-11)*a(n) +(8*n^2+39*n-35)*a(n-1) +2*(26*n^2+48*n+25)*a(n-2) -4*(8*n+5)*(n-1)*a(n-3)=0. - R. J. Mathar, Jul 16 2015
Comments