A259776 Number A(n,k) of permutations p of [n] with no fixed points and displacement of elements restricted by k: 1 <= |p(i)-i| <= k, square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 4, 0, 0, 1, 0, 1, 2, 9, 6, 1, 0, 1, 0, 1, 2, 9, 24, 13, 0, 0, 1, 0, 1, 2, 9, 44, 57, 24, 1, 0, 1, 0, 1, 2, 9, 44, 168, 140, 45, 0, 0, 1, 0, 1, 2, 9, 44, 265, 536, 376, 84, 1, 0
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 0, 0, 0, 0, 0, 0, 0, ... 0, 1, 1, 1, 1, 1, 1, 1, ... 0, 0, 2, 2, 2, 2, 2, 2, ... 0, 1, 4, 9, 9, 9, 9, 9, ... 0, 0, 6, 24, 44, 44, 44, 44, ... 0, 1, 13, 57, 168, 265, 265, 265, ... 0, 0, 24, 140, 536, 1280, 1854, 1854, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..36, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, s, k) option remember; `if`(n=0, 1, `if`(n+k in s, b(n-1, (s minus {n+k}) union `if`(n-k>1, {n-k-1}, {}), k), add(`if`(j=n, 0, b(n-1, (s minus {j}) union `if`(n-k>1, {n-k-1}, {}), k)), j=s))) end: A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), b(n, {$max(1, n-k)..n}, k)): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
b[n_, s_, k_] := b[n, s, k] = If[n==0, 1, If[MemberQ[s, n+k], b[n-1, Join[s ~Complement~ {n+k}] ~Union~ If[n-k>1, {n-k-1}, {}], k], Sum[If[j==n, 0, b[n -1, Join[s ~Complement~ {j}] ~Union~ If[n-k>1, {n-k-1}, {}], k]], {j, s}]] ]; A[n_, k_] := If[k == 0, If[n == 0, 1, 0], b[n, Range[Max[1, n-k], n], k]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 29 2017, translated from Maple *)
Formula
A(n,k) = Sum_{j=0..k} A259784(n,j).
Comments