cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259793 Number of partitions of n^4 into fourth powers.

Original entry on oeis.org

1, 1, 2, 7, 36, 253, 1886, 14800, 118238, 955639, 7750456, 62777522, 506272363, 4056634991, 32252971687, 254209569990, 1985108901344, 15352968310930, 117579612410477, 891596419221856, 6694250497509934, 49768995849050468, 366423320400440927, 2671969175372760210
Offset: 0

Views

Author

N. J. A. Sloane, Jul 06 2015

Keywords

Crossrefs

A row of the array in A259799.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) +`if`(i^4>n, 0, b(n-i^4, i)))
        end:
    a:= n-> b(n^4, n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jul 10 2015
  • Mathematica
    $RecursionLimit = 10^4; b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i^4>n, 0, b[n-i^4, i]]]; a[n_] := b[n^4, n];  Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 06 2016 after Alois P. Heinz *)

Formula

a(n) = [x^(n^4)] Product_{j>=1} 1/(1-x^(j^4)). - Alois P. Heinz, Jul 10 2015
a(n) = A046042(n^4). - Vaclav Kotesovec, Aug 19 2015
a(n) ~ exp(5 * (Gamma(1/4)*Zeta(5/4))^(4/5) * n^(4/5) / 2^(16/5)) * (Gamma(1/4)*Zeta(5/4))^(4/5) / (2^(47/10) * sqrt(5) * Pi^(5/2) * n^(26/5)) [after Hardy & Ramanujan, 1917]. - Vaclav Kotesovec, Dec 29 2016

Extensions

More terms from Alois P. Heinz, Jul 10 2015