cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259832 Numbers n with the property that it is possible to write the base 2 expansion of n as concat(a_2,b_2), with a_2>0 and b_2>0 such that, converting a_2 and b_2 to base 10 as a and b, we have (sigma(a)-a)*(sigma(b)-b) = sigma(n).

Original entry on oeis.org

7708, 9020, 86934, 92128, 120228, 325180, 372000, 491630, 565724, 739032, 862780, 1120024, 1344090, 1419304, 1440858, 1678232, 2752626, 2980515, 3684344, 4154418, 4860476, 7539610, 7565257, 9527064, 11025372, 12277728, 17002336, 20256672, 22528536, 24597984
Offset: 1

Views

Author

Paolo P. Lava, Jul 06 2015

Keywords

Comments

a(62) > 10^8. - Hiroaki Yamanouchi, Sep 24 2015

Examples

			7708 in base 2 is 1111000011100. If we take 1111000011100 = concat(11110000, 11100) then 11110000 and 11100 converted to base 10 are 240 and 28. Finally (sigma(240) - 240)*(sigma(28) - 28) = (744 - 240)*(56 - 28) = 504 * 28 = 14112 = sigma(7708); 9020 in base 2 is 10001100111100. If we take 10001100111100= concat(10001100, 111100) then 110 and 01111110000 converted to base 10 are 140 and 60. Finally (sigma(140) - 140)*(sigma(60) - 60) = (336 - 140)*(168 - 60)= 196 * 108 = 21160 = sigma(9020).
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n;
    for n from 1 to q do c:=convert(n, binary, decimal);
    for k from 1 to ilog10(c) do
    a:=convert(trunc(c/10^k), decimal, binary);
    b:=convert((c mod 10^k), decimal, binary);
    if a*b>0 then if (sigma(a)-a)*(sigma(b)-b)=sigma(n) then print(n);
    break; fi; fi; od; od; end: P(10^9);
  • Mathematica
    f[n_] := Block[{d = IntegerDigits[n, 2], len = IntegerLength[n, 2], k}, ReplaceAll[Reap[Do[k = {FromDigits[Take[d, i], 2], FromDigits[Take[d, -(len - i)], 2]}; If[! MemberQ[k, 0], Sow@ k], {i, 1, len - 1}]], {} -> {1}][[-1, 1]]]; Select[Range@ 125000, MemberQ[(DivisorSigma[1, #1] - #1) (DivisorSigma[1, #2] - #2) & @@@ f@ #, DivisorSigma[1, #]] &] (* Michael De Vlieger, Jul 07 2015 *)
  • Python
    from sympy import divisor_sigma
    A259832_list= []
    for n in range(2,10**6):
        s, k = format(n,'0b'), divisor_sigma(n)
        for l in range(1,len(s)):
            n1, n2 = int(s[:l],2), int(s[l:],2)
            if n2 > 0 and k == (divisor_sigma(n1)-n1)*(divisor_sigma(n2)-n2):
                A259832_list.append(n)
                break # Chai Wah Wu, Jul 17 2015

Extensions

a(16)-a(21) from Chai Wah Wu, Jul 17 2015
a(22)-a(30) from Hiroaki Yamanouchi, Sep 24 2015