A277967 Number of even numbers b with 0 < b < 2^n such that b^(2^n) + 1 is prime.
0, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 2, 3, 4, 1
Offset: 1
Examples
For n=18, we get b^262144 + 1 is prime for b=24518, 40734, 145310, 361658, 525094, ...; the first 3 of these b values are strictly below 262144, hence a(18)=3. The corresponding primes are 2^4+1; 2^8+1, 4^8+1; 2^16+1; 30^32+1; 120^128+1; 46^512+1; etc.
Links
Crossrefs
Programs
-
Mathematica
Table[Count[Range[2, 2^n - 1, 2], b_ /; PrimeQ[b^(2^n) + 1]], {n, 9}] (* Michael De Vlieger, Nov 10 2016 *)
-
PARI
a(n)=sum(k=1,2^(n-1)-1,ispseudoprime((2*k)^2^n+1)) \\ slow, only probabilistic primality test
Extensions
a(20) from Jeppe Stig Nielsen, Jan 02 2019
Comments